• Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

130+ Correlational Research Topics: Great Ideas For Students

Correlational Research Topics

The correlational research example title you decide to write will determine the uniqueness of your research paper. Choose a well-thought title that brings out the best of your expertise. Are you confused about which topic suits you? This article will let you know the best correlational research topics for students.

What is Correlation Research?

Correlational research involves looking at the affiliation between two or more study variables. The results of the study will have either a positive, negative, or zero correlation. More so, the research can either be quantitative or qualitative.

Now that you have the answer to “what are correlational studies,” we’ll focus on the various example topics students can use to write excellent papers.

Correlational Research Titles Examples for Highschool Students

Correlation topic examples for stem students, correlational research examples in education, correlational research questions in nursing, examples of correlational research topics in technology, correlational quantitative research topic examples in economics, correlational research topics in psychology, correlational research titles about business, correlational research sample title examples for statistics essays, correlational research examples for sociology research papers.

If you want your high school correlational research paper to stand out, go for creative and fun titles. Get a correlation research example below.

  • How can you relate bullying and academic performance?
  • Study habits vs academic grades
  • Evaluating the link between student success and parents’ involvement
  • Discuss test scores and study time
  • Physical and mental health: The correlation
  • Nutrition and study concentration
  • The connection between good results and video games
  • Clarifying the relationship between personality traits and subject preference
  • The relationship between study time and poor grades
  • The correlation between trainers’ support and students’ mental health
  • The association between school bullying and absenteeism
  • The effects of academic degrees on students’ career development
  • Is there a correlation between teaching styles and students’ learning ability

These research topics for STEM students are game-changers. However, try any of the titles below regarding correlation in research.

The connection between:

  • Food and drug efficacy
  • Exercise and sleep
  • Sleep patterns and heart rate
  • Weather seasons and body immunity
  • Wind speed and energy supply
  • Rainfall extent and crop yields
  • Respiratory health and air pollution
  • Carbon emissions and global warming
  • Stress and mental health
  • Bridge capacity and preferred design
  • Building quality and insulation capability
  • Fuel efficiency and vehicle weight
  • 19 th and 20 th Century approaches to stem subjects

As you learn more about the thesis statement about social media , keep a keen eye on each example of the correlational research paper we list below.

  • The correlation between parental guidance and career decision
  • Differences between student grades and career choice
  • Teachers’ qualifications and students’ success in class
  • The connection between teachers’ age and students’ performance
  • Clarifying students’ workload and subject choice
  • The link between teachers’ morale and students’ grades
  • Discuss school location and performance metrics
  • Clarifying the relationship between school curriculum and performance
  • Relating school programs to students’ absenteeism
  • Academic success vs teachers’ gender
  • The association between parental income and school selection
  • The effects of many subjects on students’ career choice
  • The relationship between school grading and dropout rates

In addition to biochemistry topics and anatomy research paper topics , it also helps to know correlational research topics in nursing. Some of them include the following:

  • Is there a relationship between sleep quality and post-surgery management?
  • Is there a correlation between patient healing and the choice of drugs?
  • Is there a link between physical activity levels and depression?
  • Is there an association between nurse-patient communication and patient recovery?
  • What is the correlation between age and child mortality in mothers?
  • Is there a correlation between patient education and prompt recovery?
  • What is the correlation between spirituality and the use of drugs?
  • What is the link between patient adherence to drugs and age?
  • What is the correlation between routine nursing and back pain?
  • Is there a correlation between chemotherapy and fatigue?
  • Is there a relationship between age and cholesterol levels?
  • Is there a relationship between blood pressure and sleep disturbances?
  • What is the link between drug use and organ failure?

A technology research-oriented paper should show your prowess in any area you tackle. Pick any example of a correlational research question from the list below for your research.

  • Is there a relationship between screen time and eye strain?
  • What is the link between video games and IQ levels?
  • Is there a correlation between loneliness and tech dependence?
  • What is the link between wireless technology and infertilities
  • Is there a relationship between smartphone usage and sleep quality?
  • Is there a correlation between academic performance and technology exposure?
  • Is there a relationship between technology and physical activity levels?
  • What is the correlation between self-esteem and technology?
  • What is the link between technology and memory sharpness?
  • What is the correlation between screen time and headaches?
  • Is there a correlation between technology and anxiety?
  • Is there a link between a sedentary lifestyle and technology?
  • What is the correlation between tech dependence and communication skills?

The best example of correlational design in quantitative research will help you kickstart your research paper. In your paper, focus on discussing the relationship between the following:

  • Inflation and unemployment rates
  • Financial liberation and foreign aid
  • Trade policies and foreign investors
  • Income and nation’s well being
  • Salary levels and education levels
  • Urbanization and economic progress
  • Economy growth rate and national budget
  • Marital status and employed population
  • Early retirements and the country’s growth
  • Energy prices and economic growth
  • Employee satisfaction and job retention
  • Small-scale businesses and exploitative loans
  • Educated population and nation’s economic levels

Depending on the preferred correlation method in research, your paper approach will vary. As you look at these social issues research topics , psychology correlational topics also come in handy.

Discuss the link between the following in your paper:

  • Racism and population size
  • Propaganda and marketing
  • Cults and social class
  • Bullying and skin color
  • Child abuse and marriages
  • Aging and hormones
  • Leadership and communication
  • Depression and discrimination
  • Cognitive behavior therapy and age
  • Eating disorders and genetics
  • Attention and kids’ gender
  • Speech disorder and tech dependence
  • Perception and someone’s age

Business and economics research paper topics vary, but you should always go for the best. Here are some ideal topics for your correlation research paper in business.

Assess the link between:

  • Remote employees and business growth
  • Business ethic laws and productivity
  • Language and business growth
  • Foreign investments and cultural differences
  • Monopoly and businesses closure
  • Cultural practices and business survival
  • Customer behaviors and products choice
  • Advertising and business innovations
  • Labor laws and taxation
  • Technology and business trends
  • Tourism and local economies
  • Business sanctions and currency value
  • Immigration and unemployment

You’ve probably encountered social media research topics and wondered whether you could get some focusing on statistics. Below examples will get you sorted.

Clarifying the relationship between:

  • Rent costs and population
  • COVID-19 vaccination and health budget
  • Technology and data sample collection
  • Education costs and income
  • Education levels and job satisfaction
  • Local trade volumes and dollar exchange rates
  • Loans and small businesses’ growth rate
  • Online and offline surveys
  • Wage analysis and employee age
  • National savings and employment rates
  • Poverty and income inequality
  • Trade and economic growth
  • Interest rates and consumer borrowing behavior trends

In sociology, there are so many argumentative essay topics to write about. But when it comes to correlational topics, many students have a problem.

Write a sociology correlational research paper focusing on the association between:

  • Social media and kids’ behaviors in school
  • Food culture and modern lifestyle diseases
  • Health equity and deaths
  • Gender stereotypes and unemployment
  • Women’s behaviors and mainstream media programs
  • Age differences and abusive marriages
  • Children’s obesity and social class
  • Infertility and mental health among couples
  • Bullying and past violence encounters in kids
  • Genetically modified foods and lifestyle diseases
  • Religious education and improving technology
  • Social media and modern friendships
  • Divorce and children education

Let’s now help you write your research paper on time. Whether it’s on sociology, economics, nursing or any other course, we are here for you. Our expert writers offer the best help on correlational research paper writing .

Leave a Reply Cancel reply

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Correlational Research | When & How to Use

Correlational Research | When & How to Use

Published on July 7, 2021 by Pritha Bhandari . Revised on June 22, 2023.

A correlational research design investigates relationships between variables without the researcher controlling or manipulating any of them.

A correlation reflects the strength and/or direction of the relationship between two (or more) variables. The direction of a correlation can be either positive or negative.

Positive correlation Both variables change in the same direction As height increases, weight also increases
Negative correlation The variables change in opposite directions As coffee consumption increases, tiredness decreases
Zero correlation There is no relationship between the variables Coffee consumption is not correlated with height

Table of contents

Correlational vs. experimental research, when to use correlational research, how to collect correlational data, how to analyze correlational data, correlation and causation, other interesting articles, frequently asked questions about correlational research.

Correlational and experimental research both use quantitative methods to investigate relationships between variables. But there are important differences in data collection methods and the types of conclusions you can draw.

Correlational research Experimental research
Purpose Used to test strength of association between variables Used to test cause-and-effect relationships between variables
Variables Variables are only observed with no manipulation or intervention by researchers An is manipulated and a dependent variable is observed
Control Limited is used, so other variables may play a role in the relationship are controlled so that they can’t impact your variables of interest
Validity High : you can confidently generalize your conclusions to other populations or settings High : you can confidently draw conclusions about causation

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Correlational research is ideal for gathering data quickly from natural settings. That helps you generalize your findings to real-life situations in an externally valid way.

There are a few situations where correlational research is an appropriate choice.

To investigate non-causal relationships

You want to find out if there is an association between two variables, but you don’t expect to find a causal relationship between them.

Correlational research can provide insights into complex real-world relationships, helping researchers develop theories and make predictions.

To explore causal relationships between variables

You think there is a causal relationship between two variables, but it is impractical, unethical, or too costly to conduct experimental research that manipulates one of the variables.

Correlational research can provide initial indications or additional support for theories about causal relationships.

To test new measurement tools

You have developed a new instrument for measuring your variable, and you need to test its reliability or validity .

Correlational research can be used to assess whether a tool consistently or accurately captures the concept it aims to measure.

There are many different methods you can use in correlational research. In the social and behavioral sciences, the most common data collection methods for this type of research include surveys, observations , and secondary data.

It’s important to carefully choose and plan your methods to ensure the reliability and validity of your results. You should carefully select a representative sample so that your data reflects the population you’re interested in without research bias .

In survey research , you can use questionnaires to measure your variables of interest. You can conduct surveys online, by mail, by phone, or in person.

Surveys are a quick, flexible way to collect standardized data from many participants, but it’s important to ensure that your questions are worded in an unbiased way and capture relevant insights.

Naturalistic observation

Naturalistic observation is a type of field research where you gather data about a behavior or phenomenon in its natural environment.

This method often involves recording, counting, describing, and categorizing actions and events. Naturalistic observation can include both qualitative and quantitative elements, but to assess correlation, you collect data that can be analyzed quantitatively (e.g., frequencies, durations, scales, and amounts).

Naturalistic observation lets you easily generalize your results to real world contexts, and you can study experiences that aren’t replicable in lab settings. But data analysis can be time-consuming and unpredictable, and researcher bias may skew the interpretations.

Secondary data

Instead of collecting original data, you can also use data that has already been collected for a different purpose, such as official records, polls, or previous studies.

Using secondary data is inexpensive and fast, because data collection is complete. However, the data may be unreliable, incomplete or not entirely relevant, and you have no control over the reliability or validity of the data collection procedures.

After collecting data, you can statistically analyze the relationship between variables using correlation or regression analyses, or both. You can also visualize the relationships between variables with a scatterplot.

Different types of correlation coefficients and regression analyses are appropriate for your data based on their levels of measurement and distributions .

Correlation analysis

Using a correlation analysis, you can summarize the relationship between variables into a correlation coefficient : a single number that describes the strength and direction of the relationship between variables. With this number, you’ll quantify the degree of the relationship between variables.

The Pearson product-moment correlation coefficient , also known as Pearson’s r , is commonly used for assessing a linear relationship between two quantitative variables.

Correlation coefficients are usually found for two variables at a time, but you can use a multiple correlation coefficient for three or more variables.

Regression analysis

With a regression analysis , you can predict how much a change in one variable will be associated with a change in the other variable. The result is a regression equation that describes the line on a graph of your variables.

You can use this equation to predict the value of one variable based on the given value(s) of the other variable(s). It’s best to perform a regression analysis after testing for a correlation between your variables.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

correlational research title examples quantitative

It’s important to remember that correlation does not imply causation . Just because you find a correlation between two things doesn’t mean you can conclude one of them causes the other for a few reasons.

Directionality problem

If two variables are correlated, it could be because one of them is a cause and the other is an effect. But the correlational research design doesn’t allow you to infer which is which. To err on the side of caution, researchers don’t conclude causality from correlational studies.

Third variable problem

A confounding variable is a third variable that influences other variables to make them seem causally related even though they are not. Instead, there are separate causal links between the confounder and each variable.

In correlational research, there’s limited or no researcher control over extraneous variables . Even if you statistically control for some potential confounders, there may still be other hidden variables that disguise the relationship between your study variables.

Although a correlational study can’t demonstrate causation on its own, it can help you develop a causal hypothesis that’s tested in controlled experiments.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). Correlational Research | When & How to Use. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/methodology/correlational-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, what is quantitative research | definition, uses & methods, correlation vs. causation | difference, designs & examples, correlation coefficient | types, formulas & examples, what is your plagiarism score.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Correlational Research | Guide, Design & Examples

Correlational Research | Guide, Design & Examples

Published on 5 May 2022 by Pritha Bhandari . Revised on 5 December 2022.

A correlational research design investigates relationships between variables without the researcher controlling or manipulating any of them.

A correlation reflects the strength and/or direction of the relationship between two (or more) variables. The direction of a correlation can be either positive or negative.

Positive correlation Both variables change in the same direction As height increases, weight also increases
Negative correlation The variables change in opposite directions As coffee consumption increases, tiredness decreases
Zero correlation There is no relationship between the variables Coffee consumption is not correlated with height

Table of contents

Correlational vs experimental research, when to use correlational research, how to collect correlational data, how to analyse correlational data, correlation and causation, frequently asked questions about correlational research.

Correlational and experimental research both use quantitative methods to investigate relationships between variables. But there are important differences in how data is collected and the types of conclusions you can draw.

Correlational research Experimental research
Purpose Used to test strength of association between variables Used to test cause-and-effect relationships between variables
Variables Variables are only observed with no manipulation or intervention by researchers An is manipulated and a dependent variable is observed
Control Limited is used, so other variables may play a role in the relationship are controlled so that they can’t impact your variables of interest
Validity High : you can confidently generalise your conclusions to other populations or settings High : you can confidently draw conclusions about causation

Prevent plagiarism, run a free check.

Correlational research is ideal for gathering data quickly from natural settings. That helps you generalise your findings to real-life situations in an externally valid way.

There are a few situations where correlational research is an appropriate choice.

To investigate non-causal relationships

You want to find out if there is an association between two variables, but you don’t expect to find a causal relationship between them.

Correlational research can provide insights into complex real-world relationships, helping researchers develop theories and make predictions.

To explore causal relationships between variables

You think there is a causal relationship between two variables, but it is impractical, unethical, or too costly to conduct experimental research that manipulates one of the variables.

Correlational research can provide initial indications or additional support for theories about causal relationships.

To test new measurement tools

You have developed a new instrument for measuring your variable, and you need to test its reliability or validity .

Correlational research can be used to assess whether a tool consistently or accurately captures the concept it aims to measure.

There are many different methods you can use in correlational research. In the social and behavioural sciences, the most common data collection methods for this type of research include surveys, observations, and secondary data.

It’s important to carefully choose and plan your methods to ensure the reliability and validity of your results. You should carefully select a representative sample so that your data reflects the population you’re interested in without bias .

In survey research , you can use questionnaires to measure your variables of interest. You can conduct surveys online, by post, by phone, or in person.

Surveys are a quick, flexible way to collect standardised data from many participants, but it’s important to ensure that your questions are worded in an unbiased way and capture relevant insights.

Naturalistic observation

Naturalistic observation is a type of field research where you gather data about a behaviour or phenomenon in its natural environment.

This method often involves recording, counting, describing, and categorising actions and events. Naturalistic observation can include both qualitative and quantitative elements, but to assess correlation, you collect data that can be analysed quantitatively (e.g., frequencies, durations, scales, and amounts).

Naturalistic observation lets you easily generalise your results to real-world contexts, and you can study experiences that aren’t replicable in lab settings. But data analysis can be time-consuming and unpredictable, and researcher bias may skew the interpretations.

Secondary data

Instead of collecting original data, you can also use data that has already been collected for a different purpose, such as official records, polls, or previous studies.

Using secondary data is inexpensive and fast, because data collection is complete. However, the data may be unreliable, incomplete, or not entirely relevant, and you have no control over the reliability or validity of the data collection procedures.

After collecting data, you can statistically analyse the relationship between variables using correlation or regression analyses, or both. You can also visualise the relationships between variables with a scatterplot.

Different types of correlation coefficients and regression analyses are appropriate for your data based on their levels of measurement and distributions .

Correlation analysis

Using a correlation analysis, you can summarise the relationship between variables into a correlation coefficient : a single number that describes the strength and direction of the relationship between variables. With this number, you’ll quantify the degree of the relationship between variables.

The Pearson product-moment correlation coefficient, also known as Pearson’s r , is commonly used for assessing a linear relationship between two quantitative variables.

Correlation coefficients are usually found for two variables at a time, but you can use a multiple correlation coefficient for three or more variables.

Regression analysis

With a regression analysis , you can predict how much a change in one variable will be associated with a change in the other variable. The result is a regression equation that describes the line on a graph of your variables.

You can use this equation to predict the value of one variable based on the given value(s) of the other variable(s). It’s best to perform a regression analysis after testing for a correlation between your variables.

It’s important to remember that correlation does not imply causation . Just because you find a correlation between two things doesn’t mean you can conclude one of them causes the other, for a few reasons.

Directionality problem

If two variables are correlated, it could be because one of them is a cause and the other is an effect. But the correlational research design doesn’t allow you to infer which is which. To err on the side of caution, researchers don’t conclude causality from correlational studies.

Third variable problem

A confounding variable is a third variable that influences other variables to make them seem causally related even though they are not. Instead, there are separate causal links between the confounder and each variable.

In correlational research, there’s limited or no researcher control over extraneous variables . Even if you statistically control for some potential confounders, there may still be other hidden variables that disguise the relationship between your study variables.

Although a correlational study can’t demonstrate causation on its own, it can help you develop a causal hypothesis that’s tested in controlled experiments.

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, December 05). Correlational Research | Guide, Design & Examples. Scribbr. Retrieved 9 September 2024, from https://www.scribbr.co.uk/research-methods/correlational-research-design/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, quasi-experimental design | definition, types & examples, qualitative vs quantitative research | examples & methods.

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Correlational Study Overview & Examples

By Jim Frost 2 Comments

What is a Correlational Study?

A correlational study is an experimental design that evaluates only the correlation between variables. The researchers record measurements but do not control or manipulate the variables. Correlational research is a form of observational study .

A correlation indicates that as the value of one variable increases, the other tends to change in a specific direction:

  • Positive correlation : Two variables increase or decrease together (as height increases, weight tends to increase).
  • Negative correlation : As one variable increases, the other tends to decrease (as school absences increase, grades tend to fall).
  • No correlation : No relationship exists between the two variables. As one increases, the other does not change in a specific direction (as absences increase, height doesn’t tend to increase or decrease).

Correlational study results showing a positive trend.

For example, researchers conducting correlational research explored the relationship between social media usage and levels of anxiety in young adults. Participants reported their demographic information and daily time on various social media platforms and completed a standardized anxiety assessment tool.

The correlational study looked for relationships between social media usage and anxiety. Is increased social media usage associated with higher anxiety? Is it worse for particular demographics?

Learn more about Interpreting Correlation .

Using Correlational Research

Correlational research design is crucial in various disciplines, notably psychology and medicine. This type of design is generally cheaper, easier, and quicker to conduct than an experiment because the researchers don’t control any variables or conditions. Consequently, these studies often serve as an initial assessment, especially when random assignment and controlling variables for a true experiment are not feasible or unethical.

However, an unfortunate aspect of a correlational study is its limitation in establishing causation. While these studies can reveal connections between variables, they cannot prove that altering one variable will cause changes in another. Hence, correlational research can determine whether relationships exist but cannot confirm causality.

Remember, correlation doesn’t necessarily imply causation !

Correlational Study vs Experiment

The difference between the two designs is simple.

In a correlational study, the researchers don’t systematically control any variables. They’re simply observing events and do not want to influence outcomes.

In an experiment, researchers manipulate variables and explicitly hope to affect the outcomes. For example, they might control the treatment condition by giving a medication or placebo to each subject. They also randomly assign subjects to the control and treatment groups, which helps establish causality.

Learn more about Randomized Controlled Trials (RCTs) , which statisticians consider to be true experiments.

Types of Correlation Studies and Examples

Researchers divide these studies into three broad types.

Secondary Data Sources

One approach to correlational research is to utilize pre-existing data, which may include official records, public polls, or data from earlier studies. This method can be cost-effective and time-efficient because other researchers have already gathered the data. These existing data sources can provide large sample sizes and longitudinal data , thereby showing relationship trends.

However, it also comes with potential drawbacks. The data may be incomplete or irrelevant to the new research question. Additionally, as a researcher, you won’t have control over the original data collection methods, potentially impacting the data’s reliability and validity .

Using existing data makes this approach a retrospective study .

Surveys in Correlation Research

Surveys are a great way to collect data for correlational studies while using a consistent instrument across all respondents. You can use various formats, such as in-person, online, and by phone. And you can ask the questions necessary to obtain the particular variables you need for your project. In short, it’s easy to customize surveys to match your study’s requirements.

However, you’ll need to carefully word all the questions to be clear and not introduce bias in the results. This process can take multiple iterations and pilot studies to produce the finished survey.

For example, you can use a survey to find correlations between various demographic variables and political opinions.

Naturalistic Observation

Naturalistic observation is a method of collecting field data for a correlational study. Researchers observe and measure variables in a natural environment. The process can include counting events, categorizing behavior, and describing outcomes without interfering with the activities.

For example, researchers might observe and record children’s behavior after watching television. Does a relationship exist between the type of television program and behaviors?

Naturalistic observations occur in a prospective study .

Analyzing Data from a Correlational Study

Statistical analysis of correlational research frequently involves correlation and regression analysis .

A correlation coefficient describes the strength and direction of the relationship between two variables with a single number.

Regression analysis can evaluate how multiple variables relate to a single outcome. For example, in the social media correlational study example, how do the demographic variables and daily social media usage collectively correlate with anxiety?

Curtis EA, Comiskey C, Dempsey O.  Importance and use of correlational research .  Nurse Researcher . 2016;23(6):20-25. doi:10.7748/nr.2016.e1382

Share this:

correlational research title examples quantitative

Reader Interactions

' src=

January 14, 2024 at 4:34 pm

Hi Jim. Have you written a blog note dedicated to clinical trials? If not, besides the note on hypothesis testing, are there other blogs ypo have written that touch on clinical trials?

' src=

January 14, 2024 at 5:49 pm

Hi Stan, I haven’t written a blog post specifically about clinical trials, but I have the following related posts:

Randomized Controlled Trials Clinical Trial about a COVID vaccine Clinical Trials about flu vaccines

Comments and Questions Cancel reply

What is Correlational Research? (+ Design, Examples)

Appinio Research · 04.03.2024 · 30min read

What is Correlational Research Design Examples

Ever wondered how researchers explore connections between different factors without manipulating them? Correlational research offers a window into understanding the relationships between variables in the world around us. From examining the link between exercise habits and mental well-being to exploring patterns in consumer behavior, correlational studies help us uncover insights that shape our understanding of human behavior, inform decision-making, and drive innovation. In this guide, we'll dive into the fundamentals of correlational research, exploring its definition, importance, ethical considerations, and practical applications across various fields. Whether you're a student delving into research methods or a seasoned researcher seeking to expand your methodological toolkit, this guide will equip you with the knowledge and skills to conduct and interpret correlational studies effectively.

What is Correlational Research?

Correlational research is a methodological approach used in scientific inquiry to examine the relationship between two or more variables. Unlike experimental research , which seeks to establish cause-and-effect relationships through manipulation and control of variables, correlational research focuses on identifying and quantifying the degree to which variables are related to one another. This method allows researchers to investigate associations, patterns, and trends in naturalistic settings without imposing experimental manipulations.

Importance of Correlational Research

Correlational research plays a crucial role in advancing scientific knowledge across various disciplines. Its importance stems from several key factors:

  • Exploratory Analysis :  Correlational studies provide a starting point for exploring potential relationships between variables. By identifying correlations, researchers can generate hypotheses and guide further investigation into causal mechanisms and underlying processes.
  • Predictive Modeling :  Correlation coefficients can be used to predict the behavior or outcomes of one variable based on the values of another variable. This predictive ability has practical applications in fields such as economics, psychology, and epidemiology, where forecasting future trends or outcomes is essential.
  • Diagnostic Purposes:  Correlational analyses can help identify patterns or associations that may indicate the presence of underlying conditions or risk factors. For example, correlations between certain biomarkers and disease outcomes can inform diagnostic criteria and screening protocols in healthcare.
  • Theory Development:  Correlational research contributes to theory development by providing empirical evidence for proposed relationships between variables. Researchers can refine and validate theoretical models in their respective fields by systematically examining correlations across different contexts and populations.
  • Ethical Considerations:  In situations where experimental manipulation is not feasible or ethical, correlational research offers an alternative approach to studying naturally occurring phenomena. This allows researchers to address research questions that may otherwise be inaccessible or impractical to investigate.

Correlational vs. Causation in Research

It's important to distinguish between correlation and causation in research. While correlational studies can identify relationships between variables, they cannot establish causal relationships on their own. Several factors contribute to this distinction:

  • Directionality:  Correlation does not imply the direction of causation. A correlation between two variables does not indicate which variable is causing the other; it merely suggests that they are related in some way. Additional evidence, such as experimental manipulation or longitudinal studies , is needed to establish causality.
  • Third Variables:  Correlations may be influenced by third variables, also known as confounding variables, that are not directly measured or controlled in the study. These third variables can create spurious correlations or obscure true causal relationships between the variables of interest.
  • Temporal Sequence:  Causation requires a temporal sequence, with the cause preceding the effect in time. Correlational studies alone cannot establish the temporal order of events, making it difficult to determine whether one variable causes changes in another or vice versa.

Understanding the distinction between correlation and causation is critical for interpreting research findings accurately and drawing valid conclusions about the relationships between variables. While correlational research provides valuable insights into associations and patterns, establishing causation typically requires additional evidence from experimental studies or other research designs.

Key Concepts in Correlation

Understanding key concepts in correlation is essential for conducting meaningful research and interpreting results accurately.

Correlation Coefficient

The correlation coefficient is a statistical measure that quantifies the strength and direction of the relationship between two variables. It's denoted by the symbol  r  and ranges from -1 to +1.

  • A correlation coefficient of  -1  indicates a perfect negative correlation, meaning that as one variable increases, the other decreases in a perfectly predictable manner.
  • A coefficient of  +1  signifies a perfect positive correlation, where both variables increase or decrease together in perfect sync.
  • A coefficient of  0  implies no correlation, indicating no systematic relationship between the variables.

Strength and Direction of Correlation

The strength of correlation refers to how closely the data points cluster around a straight line on the scatterplot. A correlation coefficient close to -1 or +1 indicates a strong relationship between the variables, while a coefficient close to 0 suggests a weak relationship.

  • Strong correlation:  When the correlation coefficient approaches -1 or +1, it indicates a strong relationship between the variables. For example, a correlation coefficient of -0.9 suggests a strong negative relationship, while a coefficient of +0.8 indicates a strong positive relationship.
  • Weak correlation:  A correlation coefficient close to 0 indicates a weak or negligible relationship between the variables. For instance, a coefficient of -0.1 or +0.1 suggests a weak correlation where the variables are minimally related.

The direction of correlation determines how the variables change relative to each other.

  • Positive correlation:  When one variable increases, the other variable also tends to increase. Conversely, when one variable decreases, the other variable tends to decrease. This is represented by a positive correlation coefficient.
  • Negative correlation:  In a negative correlation, as one variable increases, the other variable tends to decrease. Similarly, when one variable decreases, the other variable tends to increase. This relationship is indicated by a negative correlation coefficient.

Scatterplots

A scatterplot is a graphical representation of the relationship between two variables. Each data point on the plot represents the values of both variables for a single observation. By plotting the data points on a Cartesian plane, you can visualize patterns and trends in the relationship between the variables.

  • Interpretation:  When examining a scatterplot, observe the pattern of data points. If the points cluster around a straight line, it indicates a strong correlation. However, if the points are scattered randomly, it suggests a weak or no correlation.
  • Outliers:  Identify any outliers or data points that deviate significantly from the overall pattern. Outliers can influence the correlation coefficient and may warrant further investigation to determine their impact on the relationship between variables.
  • Line of Best Fit:  In some cases, you may draw a line of best fit through the data points to visually represent the overall trend in the relationship. This line can help illustrate the direction and strength of the correlation between the variables.

Understanding these key concepts will enable you to interpret correlation coefficients accurately and draw meaningful conclusions from your data.

How to Design a Correlational Study?

When embarking on a correlational study, careful planning and consideration are crucial to ensure the validity and reliability of your research findings.

Research Question Formulation

Formulating clear and focused research questions is the cornerstone of any successful correlational study. Your research questions should articulate the variables you intend to investigate and the nature of the relationship you seek to explore. When formulating your research questions:

  • Be Specific:  Clearly define the variables you are interested in studying and the population to which your findings will apply.
  • Be Testable:  Ensure that your research questions are empirically testable using correlational methods. Avoid vague or overly broad questions that are difficult to operationalize.
  • Consider Prior Research:  Review existing literature to identify gaps or unanswered questions in your area of interest. Your research questions should build upon prior knowledge and contribute to advancing the field.

For example, if you're interested in examining the relationship between sleep duration and academic performance among college students, your research question might be: "Is there a significant correlation between the number of hours of sleep per night and GPA among undergraduate students?"

Participant Selection

Selecting an appropriate sample of participants is critical to ensuring the generalizability and validity of your findings. Consider the following factors when selecting participants for your correlational study:

  • Population Characteristics:  Identify the population of interest for your study and ensure that your sample reflects the demographics and characteristics of this population.
  • Sampling Method:  Choose a sampling method that is appropriate for your research question and accessible, given your resources and constraints. Standard sampling methods include random sampling, stratified sampling, and convenience sampling.
  • Sample Size:   Determine the appropriate sample size based on factors such as the effect size you expect to detect, the desired level of statistical power, and practical considerations such as time and budget constraints.

For example, suppose you're studying the relationship between exercise habits and mental health outcomes in adults aged 18-65. In that case, you might use stratified random sampling to ensure representation from different age groups within the population.

Variables Identification

Identifying and operationalizing the variables of interest is essential for conducting a rigorous correlational study. When identifying variables for your research:

  • Independent and Dependent Variables:  Clearly distinguish between independent variables (factors that are hypothesized to influence the outcome) and dependent variables (the outcomes or behaviors of interest).
  • Control Variables:  Identify any potential confounding variables or extraneous factors that may influence the relationship between your independent and dependent variables. These variables should be controlled for in your analysis.
  • Measurement Scales:  Determine the appropriate measurement scales for your variables (e.g., nominal, ordinal, interval, or ratio) and select valid and reliable measures for assessing each construct.

For instance, if you're investigating the relationship between socioeconomic status (SES) and academic achievement, SES would be your independent variable, while academic achievement would be your dependent variable. You might measure SES using a composite index based on factors such as income, education level, and occupation.

Data Collection Methods

Selecting appropriate data collection methods is essential for obtaining reliable and valid data for your correlational study. When choosing data collection methods:

  • Quantitative vs. Qualitative :  Determine whether quantitative or qualitative methods are best suited to your research question and objectives. Correlational studies typically involve quantitative data collection methods like surveys, questionnaires, or archival data analysis.
  • Instrument Selection:  Choose measurement instruments that are valid, reliable, and appropriate for your variables of interest. Pilot test your instruments to ensure clarity and comprehension among your target population.
  • Data Collection Procedures :  Develop clear and standardized procedures for data collection to minimize bias and ensure consistency across participants and time points.

For example, if you're examining the relationship between smartphone use and sleep quality among adolescents, you might administer a self-report questionnaire assessing smartphone usage patterns and sleep quality indicators such as sleep duration and sleep disturbances.

Crafting a well-designed correlational study is essential for yielding meaningful insights into the relationships between variables. By meticulously formulating research questions , selecting appropriate participants, identifying relevant variables, and employing effective data collection methods, researchers can ensure the validity and reliability of their findings.

With Appinio , conducting correlational research becomes even more seamless and efficient. Our intuitive platform empowers researchers to gather real-time consumer insights in minutes, enabling them to make informed decisions with confidence.

Experience the power of Appinio and unlock valuable insights for your research endeavors. Schedule a demo today and revolutionize the way you conduct correlational studies!

Book a Demo

How to Analyze Correlational Data?

Once you have collected your data in a correlational study, the next crucial step is to analyze it effectively to draw meaningful conclusions about the relationship between variables.

How to Calculate Correlation Coefficients?

The correlation coefficient is a numerical measure that quantifies the strength and direction of the relationship between two variables. There are different types of correlation coefficients, including Pearson's correlation coefficient (for linear relationships), Spearman's rank correlation coefficient (for ordinal data ), and Kendall's tau (for non-parametric data). Here, we'll focus on calculating Pearson's correlation coefficient (r), which is commonly used for interval or ratio-level data.

To calculate Pearson's correlation coefficient (r), you can use statistical software such as SPSS, R, or Excel. However, if you prefer to calculate it manually, you can use the following formula:

r = Σ((X - X̄)(Y - Ȳ)) / ((n - 1) * (s_X * s_Y))
  • X  and  Y  are the scores of the two variables,
  • X̄  and  Ȳ  are the means of X and Y, respectively,
  • n  is the number of data points,
  • s_X  and  s_Y  are the standard deviations of X and Y, respectively.

Interpreting Correlation Results

Once you have calculated the correlation coefficient (r), it's essential to interpret the results correctly. When interpreting correlation results:

  • Magnitude:  The absolute value of the correlation coefficient (r) indicates the strength of the relationship between the variables. A coefficient close to 1 or -1 suggests a strong correlation, while a coefficient close to 0 indicates a weak or no correlation.
  • Direction:  The sign of the correlation coefficient (positive or negative) indicates the direction of the relationship between the variables. A positive correlation coefficient indicates a positive relationship (as one variable increases, the other tends to increase), while a negative correlation coefficient indicates a negative relationship (as one variable increases, the other tends to decrease).
  • Statistical Significance :  Assess the statistical significance of the correlation coefficient to determine whether the observed relationship is likely to be due to chance. This is typically done using hypothesis testing, where you compare the calculated correlation coefficient to a critical value based on the sample size and desired level of significance (e.g.,  α =0.05).

Statistical Significance

Determining the statistical significance of the correlation coefficient involves conducting hypothesis testing to assess whether the observed correlation is likely to occur by chance. The most common approach is to use a significance level (alpha,  α ) of 0.05, which corresponds to a 5% chance of obtaining the observed correlation coefficient if there is no true relationship between the variables.

To test the null hypothesis that the correlation coefficient is zero (i.e., no correlation), you can use inferential statistics such as the t-test or z-test. If the calculated p-value is less than the chosen significance level (e.g.,  p <0.05), you can reject the null hypothesis and conclude that the correlation coefficient is statistically significant.

Remember that statistical significance does not necessarily imply practical significance or the strength of the relationship. Even a statistically significant correlation with a small effect size may not be meaningful in practical terms.

By understanding how to calculate correlation coefficients, interpret correlation results, and assess statistical significance, you can effectively analyze correlational data and draw accurate conclusions about the relationships between variables in your study.

Correlational Research Limitations

As with any research methodology, correlational studies have inherent considerations and limitations that researchers must acknowledge and address to ensure the validity and reliability of their findings.

Third Variables

One of the primary considerations in correlational research is the presence of third variables, also known as confounding variables. These are extraneous factors that may influence or confound the observed relationship between the variables under study. Failing to account for third variables can lead to spurious correlations or erroneous conclusions about causality.

For example, consider a correlational study examining the relationship between ice cream consumption and drowning incidents. While these variables may exhibit a positive correlation during the summer months, the true causal factor is likely to be a third variable—such as hot weather—that influences both ice cream consumption and swimming activities, thereby increasing the risk of drowning.

To address the influence of third variables, researchers can employ various strategies, such as statistical control techniques, experimental designs (when feasible), and careful operationalization of variables.

Causal Inferences

Correlation does not imply causation—a fundamental principle in correlational research. While correlational studies can identify relationships between variables, they cannot determine causality. This is because correlation merely describes the degree to which two variables co-vary; it does not establish a cause-and-effect relationship between them.

For example, consider a correlational study that finds a positive relationship between the frequency of exercise and self-reported happiness. While it may be tempting to conclude that exercise causes happiness, it's equally plausible that happier individuals are more likely to exercise regularly. Without experimental manipulation and control over potential confounding variables, causal inferences cannot be made.

To strengthen causal inferences in correlational research, researchers can employ longitudinal designs, experimental methods (when ethical and feasible), and theoretical frameworks to guide their interpretations.

Sample Size and Representativeness

The size and representativeness of the sample are critical considerations in correlational research. A small or non-representative sample may limit the generalizability of findings and increase the risk of sampling bias .

For example, if a correlational study examines the relationship between socioeconomic status (SES) and educational attainment using a sample composed primarily of high-income individuals, the findings may not accurately reflect the broader population's experiences. Similarly, an undersized sample may lack the statistical power to detect meaningful correlations or relationships.

To mitigate these issues, researchers should aim for adequate sample sizes based on power analyses, employ random or stratified sampling techniques to enhance representativeness and consider the demographic characteristics of the target population when interpreting findings.

Ensure your survey delivers accurate insights by using our Sample Size Calculator . With customizable options for margin of error, confidence level, and standard deviation, you can determine the optimal sample size to ensure representative results. Make confident decisions backed by robust data.

Reliability and Validity

Ensuring the reliability and validity of measures is paramount in correlational research. Reliability refers to the consistency and stability of measurement over time, whereas validity pertains to the accuracy and appropriateness of measurement in capturing the intended constructs.

For example, suppose a correlational study utilizes self-report measures of depression and anxiety. In that case, it's essential to assess the measures' reliability (e.g., internal consistency, test-retest reliability) and validity (e.g., content validity, criterion validity) to ensure that they accurately reflect participants' mental health status.

To enhance reliability and validity in correlational research, researchers can employ established measurement scales, pilot-test instruments, use multiple measures of the same construct, and assess convergent and discriminant validity.

By addressing these considerations and limitations, researchers can enhance the robustness and credibility of their correlational studies and make more informed interpretations of their findings.

Correlational Research Examples and Applications

Correlational research is widely used across various disciplines to explore relationships between variables and gain insights into complex phenomena. We'll examine examples and applications of correlational studies, highlighting their practical significance and impact on understanding human behavior and societal trends across various industries and use cases.

Psychological Correlational Studies

In psychology, correlational studies play a crucial role in understanding various aspects of human behavior, cognition, and mental health. Researchers use correlational methods to investigate relationships between psychological variables and identify factors that may contribute to or predict specific outcomes.

For example, a psychological correlational study might examine the relationship between self-esteem and depression symptoms among adolescents. By administering self-report measures of self-esteem and depression to a sample of teenagers and calculating the correlation coefficient between the two variables, researchers can assess whether lower self-esteem is associated with higher levels of depression symptoms.

Other examples of psychological correlational studies include investigating the relationship between:

  • Parenting styles and academic achievement in children
  • Personality traits and job performance in the workplace
  • Stress levels and coping strategies among college students

These studies provide valuable insights into the factors influencing human behavior and mental well-being, informing interventions and treatment approaches in clinical and counseling settings.

Business Correlational Studies

Correlational research is also widely utilized in the business and management fields to explore relationships between organizational variables and outcomes. By examining correlations between different factors within an organization, researchers can identify patterns and trends that may impact performance, productivity, and profitability.

For example, a business correlational study might investigate the relationship between employee satisfaction and customer loyalty in a retail setting. By surveying employees to assess their job satisfaction levels and analyzing customer feedback and purchase behavior, researchers can determine whether higher employee satisfaction is correlated with increased customer loyalty and retention.

Other examples of business correlational studies include examining the relationship between:

  • Leadership styles and employee motivation
  • Organizational culture and innovation
  • Marketing strategies and brand perception

These studies provide valuable insights for organizations seeking to optimize their operations, improve employee engagement, and enhance customer satisfaction.

Marketing Correlational Studies

In marketing, correlational studies are instrumental in understanding consumer behavior, identifying market trends, and optimizing marketing strategies. By examining correlations between various marketing variables, researchers can uncover insights that drive effective advertising campaigns, product development, and brand management.

For example, a marketing correlational study might explore the relationship between social media engagement and brand loyalty among millennials. By collecting data on millennials' social media usage, brand interactions, and purchase behaviors, researchers can analyze whether higher levels of social media engagement correlate with increased brand loyalty and advocacy.

Another example of a marketing correlational study could focus on investigating the relationship between pricing strategies and customer satisfaction in the retail sector. By analyzing data on pricing fluctuations, customer feedback , and sales performance, researchers can assess whether pricing strategies such as discounts or promotions impact customer satisfaction and repeat purchase behavior.

Other potential areas of inquiry in marketing correlational studies include examining the relationship between:

  • Product features and consumer preferences
  • Advertising expenditures and brand awareness
  • Online reviews and purchase intent

These studies provide valuable insights for marketers seeking to optimize their strategies, allocate resources effectively, and build strong relationships with consumers in an increasingly competitive marketplace. By leveraging correlational methods, marketers can make data-driven decisions that drive business growth and enhance customer satisfaction.

Correlational Research Ethical Considerations

Ethical considerations are paramount in all stages of the research process, including correlational studies. Researchers must adhere to ethical guidelines to ensure the rights, well-being, and privacy of participants are protected. Key ethical considerations to keep in mind include:

  • Informed Consent:  Obtain informed consent from participants before collecting any data. Clearly explain the purpose of the study, the procedures involved, and any potential risks or benefits. Participants should have the right to withdraw from the study at any time without consequence.
  • Confidentiality:  Safeguard the confidentiality of participants' data. Ensure that any personal or sensitive information collected during the study is kept confidential and is only accessible to authorized individuals. Use anonymization techniques when reporting findings to protect participants' privacy.
  • Voluntary Participation:  Ensure that participation in the study is voluntary and not coerced. Participants should not feel pressured to take part in the study or feel that they will suffer negative consequences for declining to participate.
  • Avoiding Harm:  Take measures to minimize any potential physical, psychological, or emotional harm to participants. This includes avoiding deceptive practices, providing appropriate debriefing procedures (if necessary), and offering access to support services if participants experience distress.
  • Deception:  If deception is necessary for the study, it must be justified and minimized. Deception should be disclosed to participants as soon as possible after data collection, and any potential risks associated with the deception should be mitigated.
  • Researcher Integrity:  Maintain integrity and honesty throughout the research process. Avoid falsifying data, manipulating results, or engaging in any other unethical practices that could compromise the integrity of the study.
  • Respect for Diversity:  Respect participants' cultural, social, and individual differences. Ensure that research protocols are culturally sensitive and inclusive, and that participants from diverse backgrounds are represented and treated with respect.
  • Institutional Review:  Obtain ethical approval from institutional review boards or ethics committees before commencing the study. Adhere to the guidelines and regulations set forth by the relevant governing bodies and professional organizations.

Adhering to these ethical considerations ensures that correlational research is conducted responsibly and ethically, promoting trust and integrity in the scientific community.

Correlational Research Best Practices and Tips

Conducting a successful correlational study requires careful planning, attention to detail, and adherence to best practices in research methodology. Here are some tips and best practices to help you conduct your correlational research effectively:

  • Clearly Define Variables:  Clearly define the variables you are studying and operationalize them into measurable constructs. Ensure that your variables are accurately and consistently measured to avoid ambiguity and ensure reliability.
  • Use Valid and Reliable Measures:  Select measurement instruments that are valid and reliable for assessing your variables of interest. Pilot test your measures to ensure clarity, comprehension, and appropriateness for your target population.
  • Consider Potential Confounding Variables:  Identify and control for potential confounding variables that could influence the relationship between your variables of interest. Consider including control variables in your analysis to isolate the effects of interest.
  • Ensure Adequate Sample Size:  Determine the appropriate sample size based on power analyses and considerations of statistical power. Larger sample sizes increase the reliability and generalizability of your findings.
  • Random Sampling:  Whenever possible, use random sampling techniques to ensure that your sample is representative of the population you are studying. If random sampling is not feasible, carefully consider the characteristics of your sample and the extent to which findings can be generalized.
  • Statistical Analysis :  Choose appropriate statistical techniques for analyzing your data, taking into account the nature of your variables and research questions. Consult with a statistician if necessary to ensure the validity and accuracy of your analyses.
  • Transparent Reporting:  Transparently report your methods, procedures, and findings in accordance with best practices in research reporting. Clearly articulate your research questions, methods, results, and interpretations to facilitate reproducibility and transparency.
  • Peer Review:  Seek feedback from colleagues, mentors, or peer reviewers throughout the research process. Peer review helps identify potential flaws or biases in your study design, analysis, and interpretation, improving your research's overall quality and credibility.

By following these best practices and tips, you can conduct your correlational research with rigor, integrity, and confidence, leading to valuable insights and contributions to your field.

Conclusion for Correlational Research

Correlational research serves as a powerful tool for uncovering connections between variables in the world around us. By examining the relationships between different factors, researchers can gain valuable insights into human behavior, health outcomes, market trends, and more. While correlational studies cannot establish causation on their own, they provide a crucial foundation for generating hypotheses, predicting outcomes, and informing decision-making in various fields. Understanding the principles and practices of correlational research empowers researchers to explore complex phenomena, advance scientific knowledge, and address real-world challenges. Moreover, embracing ethical considerations and best practices in correlational research ensures the integrity, validity, and reliability of study findings. By prioritizing informed consent, confidentiality, and participant well-being, researchers can conduct studies that uphold ethical standards and contribute meaningfully to the body of knowledge. Incorporating transparent reporting, peer review, and continuous learning further enhances the quality and credibility of correlational research. Ultimately, by leveraging correlational methods responsibly and ethically, researchers can unlock new insights, drive innovation, and make a positive impact on society.

How to Collect Data for Correlational Research in Minutes?

Discover the revolutionary power of Appinio , the real-time market research platform. With Appinio, conducting your own correlational research has never been easier or more exciting. Gain access to real-time consumer insights, empowering you to make data-driven decisions in minutes. Here's why Appinio stands out:

  • From questions to insights in minutes:  Say goodbye to lengthy research processes. With Appinio, you can gather valuable insights swiftly, allowing you to act on them immediately.
  • Intuitive platform for everyone:  No need for a PhD in research. Appinio's user-friendly interface makes it accessible to anyone, empowering you to conduct professional-grade research effortlessly.
  • Extensive reach, global impact:  Define your target group from over 1200 characteristics and survey consumers in over 90 countries. With Appinio, the world is your research playground.

Register now EN

Get free access to the platform!

Join the loop 💌

Be the first to hear about new updates, product news, and data insights. We'll send it all straight to your inbox.

Get the latest market research news straight to your inbox! 💌

Wait, there's more

Get your brand Holiday Ready: 4 Essential Steps to Smash your Q4

03.09.2024 | 3min read

Get your brand Holiday Ready: 4 Essential Steps to Smash your Q4

Beyond Demographics: Psychographic Power in target group identification

03.09.2024 | 8min read

Beyond Demographics: Psychographics power in target group identification

What is Convenience Sampling Definition Method Examples

29.08.2024 | 32min read

What is Convenience Sampling? Definition, Method, Examples

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

correlational research title examples quantitative

Home Market Research

Correlational Research: What it is with Examples

Use correlational research method to conduct a correlational study and measure the statistical relationship between two variables. Learn more.

Our minds can do some brilliant things. For example, it can memorize the jingle of a pizza truck. The louder the jingle, the closer the pizza truck is to us. Who taught us that? Nobody! We relied on our understanding and came to a conclusion. We don’t stop there, do we? If there are multiple pizza trucks in the area and each one has a different jingle, we would memorize it all and relate the jingle to its pizza truck.

This is what correlational research precisely is, establishing a relationship between two variables, “jingle” and “distance of the truck” in this particular example. The correlational study looks for variables that seem to interact with each other. When you see one variable changing, you have a fair idea of how the other variable will change.

What is Correlational research?

Correlational research is a type of non-experimental research method in which a researcher measures two variables and understands and assesses the statistical relationship between them with no influence from any extraneous variable. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities.

Correlational Research Example

The correlation coefficient shows the correlation between two variables (A correlation coefficient is a statistical measure that calculates the strength of the relationship between two variables), a value measured between -1 and +1. When the correlation coefficient is close to +1, there is a positive correlation between the two variables. If the value is relative to -1, there is a negative correlation between the two variables. When the value is close to zero, then there is no relationship between the two variables.

Let us take an example to understand correlational research.

Consider hypothetically, a researcher is studying a correlation between cancer and marriage. In this study, there are two variables: disease and marriage. Let us say marriage has a negative association with cancer. This means that married people are less likely to develop cancer.

However, this doesn’t necessarily mean that marriage directly avoids cancer. In correlational research, it is not possible to establish the fact, what causes what. It is a misconception that a correlational study involves two quantitative variables. However, the reality is two variables are measured, but neither is changed. This is true independent of whether the variables are quantitative or categorical.

Types of correlational research

Mainly three types of correlational research have been identified:

1. Positive correlation: A positive relationship between two variables is when an increase in one variable leads to a rise in the other variable. A decrease in one variable will see a reduction in the other variable. For example, the amount of money a person has might positively correlate with the number of cars the person owns.

2. Negative correlation: A negative correlation is quite literally the opposite of a positive relationship. If there is an increase in one variable, the second variable will show a decrease, and vice versa.

For example, being educated might negatively correlate with the crime rate when an increase in one variable leads to a decrease in another and vice versa. If a country’s education level is improved, it can lower crime rates. Please note that this doesn’t mean that lack of education leads to crimes. It only means that a lack of education and crime is believed to have a common reason – poverty.

3. No correlation: There is no correlation between the two variables in this third type . A change in one variable may not necessarily see a difference in the other variable. For example, being a millionaire and happiness are not correlated. An increase in money doesn’t lead to happiness.

Characteristics of correlational research

Correlational research has three main characteristics. They are: 

  • Non-experimental : The correlational study is non-experimental. It means that researchers need not manipulate variables with a scientific methodology to either agree or disagree with a hypothesis. The researcher only measures and observes the relationship between the variables without altering them or subjecting them to external conditioning.
  • Backward-looking : Correlational research only looks back at historical data and observes events in the past. Researchers use it to measure and spot historical patterns between two variables. A correlational study may show a positive relationship between two variables, but this can change in the future.
  • Dynamic : The patterns between two variables from correlational research are never constant and are always changing. Two variables having negative correlation research in the past can have a positive correlation relationship in the future due to various factors.

Data collection

The distinctive feature of correlational research is that the researcher can’t manipulate either of the variables involved. It doesn’t matter how or where the variables are measured. A researcher could observe participants in a closed environment or a public setting.

Correlational Research

Researchers use two data collection methods to collect information in correlational research.

01. Naturalistic observation

Naturalistic observation is a way of data collection in which people’s behavioral targeting is observed in their natural environment, in which they typically exist. This method is a type of field research. It could mean a researcher might be observing people in a grocery store, at the cinema, playground, or in similar places.

Researchers who are usually involved in this type of data collection make observations as unobtrusively as possible so that the participants involved in the study are not aware that they are being observed else they might deviate from being their natural self.

Ethically this method is acceptable if the participants remain anonymous, and if the study is conducted in a public setting, a place where people would not normally expect complete privacy. As mentioned previously, taking an example of the grocery store where people can be observed while collecting an item from the aisle and putting in the shopping bags. This is ethically acceptable, which is why most researchers choose public settings for recording their observations. This data collection method could be both qualitative and quantitative . If you need to know more about qualitative data, you can explore our newly published blog, “ Examples of Qualitative Data in Education .”

02. Archival data

Another approach to correlational data is the use of archival data. Archival information is the data that has been previously collected by doing similar kinds of research . Archival data is usually made available through primary research .

In contrast to naturalistic observation, the information collected through archived data can be pretty straightforward. For example, counting the number of people named Richard in the various states of America based on social security records is relatively short.

Use the correlational research method to conduct a correlational study and measure the statistical relationship between two variables. Uncover the insights that matter the most. Use QuestionPro’s research platform to uncover complex insights that can propel your business to the forefront of your industry.

Research to make better decisions. Start a free trial today. No credit card required.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

When thinking about Customer Experience, so much of what we discuss is focused on measurement, dashboards, analytics, and insights. However, the “product” that is provided can be just as important.

Was The Experience Memorable? — Tuesday CX Thoughts

Sep 10, 2024

Data Analyst

What Does a Data Analyst Do? Skills, Tools & Tips

Sep 9, 2024

Gallup Access alternatives

Best Gallup Access Alternatives & Competitors in 2024

Sep 6, 2024

Experimental vs Observational Studies: Differences & Examples

Experimental vs Observational Studies: Differences & Examples

Sep 5, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence
  • Correlational Research Designs: Types, Examples & Methods

busayo.longe

The human mind is a powerful tool that allows you to sift through seemingly unrelated variables and establish a connection about a specific subject at hand. This skill is what comes into play when we talk about correlational research.

Did you know that Correlational research is something that you do every day; think about how you establish a connection between the doorbell ringing at a particular time and your Amazon package’s arrival. This is why you need to understand and know the different types of correlational research that are available and more importantly, how to go about it.

What is Correlational Research?

Correlational research is a type of research method that involves observing two variables in order to establish a statistically corresponding relationship between them. The aim of correlational research is to identify variables that have some sort of relationship to the extent that a change in one creates some change in the other. 

This type of research is descriptive, unlike experimental research which relies entirely on scientific methodology and hypothesis. For example, correlational research may reveal the statistical relationship between high-income earners and relocation; that is, the more people earn, the more likely they are to relocate or not. 

Correlational research is a way of studying two things to see if they’re related. For example, you might do a correlational study to see if there’s a relationship between how much time people spend on social media and how lonely they feel. Correlational research can’t prove that one thing causes the other, but it can show that there’s a link between them.

This type of research is descriptive, unlike  experimental research  which relies entirely on scientific methodology and hypothesis. For example, correlational research may reveal the statistical relationship between high-income earners and relocation; that is, the more people earn, the more likely they are to relocate or not.

What are the Types of Correlational Research?

Essentially, there are 3 types of correlational research which are positive correlational research, negative correlational research, and no correlational research. Each of these types is defined by peculiar characteristics. 

  • Positive Correlational Research

Positive correlational research is a research method involving 2 variables that are statistically corresponding where an increase or decrease in 1 variable creates a like change in the other. An example is when an increase in workers’ remuneration results in an increase in the prices of goods and services and vice versa.

  • Negative Correlational Research

Negative correlational research is a research method involving 2 variables that are statistically opposite where an increase in one of the variables creates an alternate effect or decrease in the other variable. An example of a negative correlation is if the rise in goods and services causes a decrease in demand and vice versa.

  • Zero Correlational Research

Zero correlational research is a type of correlational research that involves 2 variables that are not necessarily statistically connected. In this case, a change in one of the variables may not trigger a corresponding or alternate change in the other variable.

Zero correlational research caters for variables with vague statistical relationships. For example, wealth and patience can be variables under zero correlational research because they are statistically independent. 

Sporadic change patterns that occur in variables with zero correlational are usually by chance and not as a result of corresponding or alternate mutual inclusiveness. 

Correlational research can also be classified based on data collection methods. Based on these, there are 3 types of correlational research: Naturalistic observation research, survey research and archival research. 

What are the Data Collection Methods in Correlational research? 

Data collection methods in correlational research are the research methodologies adopted by persons carrying out correlational research in order to determine the linear statistical relationship between 2 variables. These data collection methods are used to gather information in correlational research. 

The 3 methods of data collection in correlational research are naturalistic observation method, archival data method, and the survey method. All of these would be clearly explained in the subsequent paragraphs. 

  • Naturalistic Observation

Naturalistic observation is a correlational research methodology that involves observing people’s behaviors as shown in the natural environment where they exist, over a period of time. It is a type of research-field method that involves the researcher paying closing attention to natural behavior patterns of the subjects under consideration.

This method is extremely demanding as the researcher must take extra care to ensure that the subjects do not suspect that they are being observed else they deviate from their natural behavior patterns. It is best for all subjects under observation to remain anonymous in order to avoid a breach of privacy. 

The major advantages of the naturalistic observation method are that it allows the researcher to fully observe the subjects (variables) in their natural state. However, it is a very expensive and time-consuming process plus the subjects can become aware of this act at any time and may act contrary. 

  • Archival Data

Archival data is a type of correlational research method that involves making use of already gathered information about the variables in correlational research. Since this method involves using data that is already gathered and analyzed, it is usually straight to the point.

For this method of correlational research, the research makes use of earlier studies conducted by other researchers or the historical records of the variables being analyzed. This method helps a researcher to track already determined statistical patterns of the variables or subjects. 

This method is less expensive, saves time and provides the researcher with more disposable data to work with. However, it has the problem of data accuracy as important information may be missing from previous research since the researcher has no control over the data collection process. 

  • Survey Method

The survey method is the most common method of correlational research; especially in fields like psychology. It involves random sampling of the variables or the subjects in the research in which the participants fill a questionnaire centered on the subjects of interest.

This method is very flexible as researchers can gather large amounts of data in very little time. However, it is subject to survey response bias and can also be affected by biased survey questions or under-representation of survey respondents or participants. 

These would be properly explained under data collection methods in correlational research. 

Examples of Correlational Research

There are a lot of examples of correlational research, and they all show how a correlational study can be used to figure out the statistical behavioural trend of the variables being studied. Here are 3 examples:

  • You want to know if wealthy people are less likely to be patient. From your experience, you believe that wealthy people are impatient. However, you want to establish a statistical pattern that proves or disproves your belief. In this case, you can carry out correlational research to identify a trend that links both variables.
  • You want to know if there’s a correlation between how much people earn and the number of children that they have. You do not believe that people with more spending power have more children than people with less spending power.

You think that how much people earn hardly determines the number of children that they have. Yet, carrying out correlational research on both variables could reveal any correlational relationship that exists between them. 

  • You believe that domestic violence causes a brain hemorrhage. You cannot carry out an experiment as it would be unethical to deliberately subject people to domestic violence.

However, you can carry out correlational research to find out if victims of domestic violence suffer brain hemorrhage more than non-victims. 

What are the Characteristics of Correlational Research? 

  • Correlational Research is non-experimental

Correlational research is non-experimental as it does not involve manipulating variables using a scientific methodology in order to agree or disagree with a hypothesis. In correlational research, the researcher simply observes and measures the natural relationship between 2 variables; without subjecting either of the variables to external conditioning.

  • Correlational Research is Backward-looking

Correlational research doesn’t take the future into consideration as it only observes and measures the recent historical relationship that exists between 2 variables. In this sense, the statistical pattern resulting from correlational research is backward-looking and can seize to exist at any point, going forward.

Correlational research observes and measures historical patterns between 2 variables such as the relationship between high-income earners and tax payment. Correlational research may reveal a positive relationship between the aforementioned variables but this may change at any point in the future. 

  • Correlational Research is Dynamic

Statistical patterns between 2 variables that result from correlational research are ever-changing. The correlation between 2 variables changes on a daily basis and such, it cannot be used as a fixed data for further research.

For example, the 2 variables can have a negative correlational relationship for a period of time, maybe 5 years. After this time, the correlational relationship between them can become positive; as observed in the relationship between bonds and stocks. 

  • Data resulting from correlational research are not constant and cannot be used as a standard variable for further research.

What is the Correlation Coefficient? 

A correlation coefficient is an important value in correlational research that indicates whether the inter-relationship between 2 variables is positive, negative or non-existent. It is usually represented with the sign [r] and is part of a range of possible correlation coefficients from -1.0 to +1.0. 

The strength of a correlation between quantitative variables is typically measured using a statistic called Pearson’s Correlation Coefficient (or Pearson’s r) . A positive correlation is indicated by a value of 1.0, a perfect negative correlation is indicated by a value of -1.0 while zero correlation is indicated by a value of 0.0. 

It is important to note that a correlation coefficient only reflects the linear relationship between 2 variables; it does not capture non-linear relationships and cannot separate dependent and independent variables. The correlation coefficient helps you to determine the degree of statistical relationship that exists between variables. 

What are the Advantages of Correlational Research?

  • In cases where carrying out experimental research is unethical, correlational research  can be used to determine the relationship between 2 variables. For example, when studying humans, carrying out an experiment can be seen as unsafe or unethical; hence, choosing correlational research would be the best option.
  • Through correlational research, you can easily determine the statistical relationship between 2 variables.
  • Carrying out correlational research is less time-consuming and less expensive than experimental research. This becomes a strong advantage when working with a minimum of researchers and funding or when keeping the number of variables in a study very low.
  • Correlational research allows the researcher to carry out shallow data gathering using different methods such as a short survey. A short survey does not require the researcher to personally administer it so this allows the researcher to work with a few people.

What are the Disadvantages of Correlational Research? 

  • Correlational research is limiting in nature as it can only be used to determine the statistical relationship between 2 variables. It cannot be used to establish a relationship between more than 2 variables.
  • It does not account for cause and effect between 2 variables as it doesn’t highlight which of the 2 variables is responsible for the statistical pattern that is observed. For example, finding that education correlates positively with vegetarianism doesn’t explain whether being educated leads to becoming a vegetarian or whether vegetarianism leads to more education.
  • Reasons for either can be assumed, but until more research is done, causation can’t be determined. Also, a third, unknown variable might be causing both. For instance, living in the state of Detroit can lead to both education and vegetarianism.
  • Correlational research depends on past statistical patterns to determine the relationship between variables. As such, its data cannot be fully depended on for further research.
  • In correlational research, the researcher has no control over the variables. Unlike experimental research, correlational research only allows the researcher to observe the variables for connecting statistical patterns without introducing a catalyst.
  • The information received from correlational research is limited. Correlational research only shows the relationship between variables and does not equate to causation.

What are the Differences between Correlational and Experimental Research?  

  • Methodology

The major difference between correlational research and experimental research is methodology. In correlational research, the researcher looks for a statistical pattern linking 2 naturally-occurring variables while in experimental research, the researcher introduces a catalyst and monitors its effects on the variables.

  • Observation

In correlational research, the researcher passively observes the phenomena and measures whatever relationship that occurs between them. However, in experimental research, the researcher actively observes phenomena after triggering a change in the behavior of the variables.

In experimental research, the researcher introduces a catalyst and monitors its effects on the variables, that is, cause and effect. In correlational research, the researcher is not interested in cause and effect as it applies; rather, he or she identifies recurring statistical patterns connecting the variables in research.

  • Number of Variables

research caters to an unlimited number of variables. Correlational research, on the other hand, caters to only 2 variables.

  • Experimental research is causative while correlational research is relational.
  • Correlational research is preliminary and almost always precedes experimental research.
  • Unlike correlational research, experimental research allows the researcher to control the variables.

How to Use Online Forms for Correlational Research

One of the most popular methods of conducting correlational research is by carrying out a survey which can be made easier with the use of an online form. Surveys for correlational research involve generating different questions that revolve around the variables under observation and, allowing respondents to provide answers to these questions. 

Using an online form for your correlational research survey would help the researcher to gather more data in minimum time. In addition, the researcher would be able to reach out to more survey respondents than is plausible with printed correlational research survey forms . 

In addition, the researcher would be able to swiftly process and analyze all responses in order to objectively establish the statistical pattern that links the variables in the research. Using an online form for correlational research also helps the researcher to minimize the cost incurred during the research period. 

To use an online form for a correlational research survey, you would need to sign up on a data-gathering platform like Formplus . Formplus allows you to create custom forms for correlational research surveys using the Formplus builder. 

You can customize your correlational research survey form by adding background images, new color themes or your company logo to make it appear even more professional. In addition, Formplus also has a survey form template that you can edit for a correlational research study. 

You can create different types of survey questions including open-ended questions , rating questions, close-ended questions and multiple answers questions in your survey in the Formplus builder. After creating your correlational research survey, you can share the personalized link with respondents via email or social media.

Formplus also enables you to collect offline responses in your form.

Conclusion 

Correlational research enables researchers to establish the statistical pattern between 2 seemingly interconnected variables; as such, it is the starting point of any type of research. It allows you to link 2 variables by observing their behaviors in the most natural state. 

Unlike experimental research, correlational research does not emphasize the causative factor affecting 2 variables and this makes the data that results from correlational research subject to constant change. However, it is quicker, easier, less expensive and more convenient than experimental research. 

It is important to always keep the aim of your research at the back of your mind when choosing the best type of research to adopt. If you simply need to observe how the variables react to change then, experimental research is the best type to subscribe for. 

It is best to conduct correlational research using an online correlational research survey form as this makes the data-gathering process, more convenient. Formplus is a great online data-gathering platform that you can use to create custom survey forms for correlational research. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • characteristics of correlational research
  • types of correlational research
  • what is correlational research
  • busayo.longe

Formplus

You may also like:

Projective Techniques In Surveys: Definition, Types & Pros & Cons

Introduction When you’re conducting a survey, you need to find out what people think about things. But how do you get an accurate and...

correlational research title examples quantitative

What is Network Sampling In Surveys?

Introduction Network sampling is a valuable technique in survey research that involves leveraging existing networks to select and...

Subgroup Analysis: What It Is + How to Conduct It

Introduction Clinical trials are an integral part of the drug development process. They aim to assess the safety and efficacy of a new...

Netnography in Research: What it is, Important, Pros & Cons

Currently, social media and digital communication are the top channels for communication. So, you need to adapt their marketing...

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7.2 Correlational Research

Learning objectives.

  • Define correlational research and give several examples.
  • Explain why a researcher might choose to conduct correlational research rather than experimental research or another type of nonexperimental research.

What Is Correlational Research?

Correlational research is a type of nonexperimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are essentially two reasons that researchers interested in statistical relationships between variables would choose to conduct a correlational study rather than an experiment. The first is that they do not believe that the statistical relationship is a causal one. For example, a researcher might evaluate the validity of a brief extraversion test by administering it to a large group of participants along with a longer extraversion test that has already been shown to be valid. This researcher might then check to see whether participants’ scores on the brief test are strongly correlated with their scores on the longer one. Neither test score is thought to cause the other, so there is no independent variable to manipulate. In fact, the terms independent variable and dependent variable do not apply to this kind of research.

The other reason that researchers would choose to use a correlational study rather than an experiment is that the statistical relationship of interest is thought to be causal, but the researcher cannot manipulate the independent variable because it is impossible, impractical, or unethical. For example, Allen Kanner and his colleagues thought that the number of “daily hassles” (e.g., rude salespeople, heavy traffic) that people experience affects the number of physical and psychological symptoms they have (Kanner, Coyne, Schaefer, & Lazarus, 1981). But because they could not manipulate the number of daily hassles their participants experienced, they had to settle for measuring the number of daily hassles—along with the number of symptoms—using self-report questionnaires. Although the strong positive relationship they found between these two variables is consistent with their idea that hassles cause symptoms, it is also consistent with the idea that symptoms cause hassles or that some third variable (e.g., neuroticism) causes both.

A common misconception among beginning researchers is that correlational research must involve two quantitative variables, such as scores on two extraversion tests or the number of hassles and number of symptoms people have experienced. However, the defining feature of correlational research is that the two variables are measured—neither one is manipulated—and this is true regardless of whether the variables are quantitative or categorical. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a correlational study because the researcher did not manipulate the students’ nationalities. The same is true of the study by Cacioppo and Petty comparing college faculty and factory workers in terms of their need for cognition. It is a correlational study because the researchers did not manipulate the participants’ occupations.

Figure 7.2 “Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists” shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a correlational study because it is unclear whether the independent variable was manipulated. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then it is an experiment. If the researcher simply asked participants whether they made daily to-do lists, then it is a correlational study. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a correlational study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead (the directionality problem). Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed (the third-variable problem). The crucial point is that what defines a study as experimental or correlational is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. It is how the study is conducted.

Figure 7.2 Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Data Collection in Correlational Research

Again, the defining feature of correlational research is that neither variable is manipulated. It does not matter how or where the variables are measured. A researcher could have participants come to a laboratory to complete a computerized backward digit span task and a computerized risky decision-making task and then assess the relationship between participants’ scores on the two tasks. Or a researcher could go to a shopping mall to ask people about their attitudes toward the environment and their shopping habits and then assess the relationship between these two variables. Both of these studies would be correlational because no independent variable is manipulated. However, because some approaches to data collection are strongly associated with correlational research, it makes sense to discuss them here. The two we will focus on are naturalistic observation and archival data. A third, survey research, is discussed in its own chapter.

Naturalistic Observation

Naturalistic observation is an approach to data collection that involves observing people’s behavior in the environment in which it typically occurs. Thus naturalistic observation is a type of field research (as opposed to a type of laboratory research). It could involve observing shoppers in a grocery store, children on a school playground, or psychiatric inpatients in their wards. Researchers engaged in naturalistic observation usually make their observations as unobtrusively as possible so that participants are often not aware that they are being studied. Ethically, this is considered to be acceptable if the participants remain anonymous and the behavior occurs in a public setting where people would not normally have an expectation of privacy. Grocery shoppers putting items into their shopping carts, for example, are engaged in public behavior that is easily observable by store employees and other shoppers. For this reason, most researchers would consider it ethically acceptable to observe them for a study. On the other hand, one of the arguments against the ethicality of the naturalistic observation of “bathroom behavior” discussed earlier in the book is that people have a reasonable expectation of privacy even in a public restroom and that this expectation was violated.

Researchers Robert Levine and Ara Norenzayan used naturalistic observation to study differences in the “pace of life” across countries (Levine & Norenzayan, 1999). One of their measures involved observing pedestrians in a large city to see how long it took them to walk 60 feet. They found that people in some countries walked reliably faster than people in other countries. For example, people in the United States and Japan covered 60 feet in about 12 seconds on average, while people in Brazil and Romania took close to 17 seconds.

Because naturalistic observation takes place in the complex and even chaotic “real world,” there are two closely related issues that researchers must deal with before collecting data. The first is sampling. When, where, and under what conditions will the observations be made, and who exactly will be observed? Levine and Norenzayan described their sampling process as follows:

Male and female walking speed over a distance of 60 feet was measured in at least two locations in main downtown areas in each city. Measurements were taken during main business hours on clear summer days. All locations were flat, unobstructed, had broad sidewalks, and were sufficiently uncrowded to allow pedestrians to move at potentially maximum speeds. To control for the effects of socializing, only pedestrians walking alone were used. Children, individuals with obvious physical handicaps, and window-shoppers were not timed. Thirty-five men and 35 women were timed in most cities. (p. 186)

Precise specification of the sampling process in this way makes data collection manageable for the observers, and it also provides some control over important extraneous variables. For example, by making their observations on clear summer days in all countries, Levine and Norenzayan controlled for effects of the weather on people’s walking speeds.

The second issue is measurement. What specific behaviors will be observed? In Levine and Norenzayan’s study, measurement was relatively straightforward. They simply measured out a 60-foot distance along a city sidewalk and then used a stopwatch to time participants as they walked over that distance. Often, however, the behaviors of interest are not so obvious or objective. For example, researchers Robert Kraut and Robert Johnston wanted to study bowlers’ reactions to their shots, both when they were facing the pins and then when they turned toward their companions (Kraut & Johnston, 1979). But what “reactions” should they observe? Based on previous research and their own pilot testing, Kraut and Johnston created a list of reactions that included “closed smile,” “open smile,” “laugh,” “neutral face,” “look down,” “look away,” and “face cover” (covering one’s face with one’s hands). The observers committed this list to memory and then practiced by coding the reactions of bowlers who had been videotaped. During the actual study, the observers spoke into an audio recorder, describing the reactions they observed. Among the most interesting results of this study was that bowlers rarely smiled while they still faced the pins. They were much more likely to smile after they turned toward their companions, suggesting that smiling is not purely an expression of happiness but also a form of social communication.

A woman bowling

Naturalistic observation has revealed that bowlers tend to smile when they turn away from the pins and toward their companions, suggesting that smiling is not purely an expression of happiness but also a form of social communication.

sieneke toering – bowling big lebowski style – CC BY-NC-ND 2.0.

When the observations require a judgment on the part of the observers—as in Kraut and Johnston’s study—this process is often described as coding . Coding generally requires clearly defining a set of target behaviors. The observers then categorize participants individually in terms of which behavior they have engaged in and the number of times they engaged in each behavior. The observers might even record the duration of each behavior. The target behaviors must be defined in such a way that different observers code them in the same way. This is the issue of interrater reliability. Researchers are expected to demonstrate the interrater reliability of their coding procedure by having multiple raters code the same behaviors independently and then showing that the different observers are in close agreement. Kraut and Johnston, for example, video recorded a subset of their participants’ reactions and had two observers independently code them. The two observers showed that they agreed on the reactions that were exhibited 97% of the time, indicating good interrater reliability.

Archival Data

Another approach to correlational research is the use of archival data , which are data that have already been collected for some other purpose. An example is a study by Brett Pelham and his colleagues on “implicit egotism”—the tendency for people to prefer people, places, and things that are similar to themselves (Pelham, Carvallo, & Jones, 2005). In one study, they examined Social Security records to show that women with the names Virginia, Georgia, Louise, and Florence were especially likely to have moved to the states of Virginia, Georgia, Louisiana, and Florida, respectively.

As with naturalistic observation, measurement can be more or less straightforward when working with archival data. For example, counting the number of people named Virginia who live in various states based on Social Security records is relatively straightforward. But consider a study by Christopher Peterson and his colleagues on the relationship between optimism and health using data that had been collected many years before for a study on adult development (Peterson, Seligman, & Vaillant, 1988). In the 1940s, healthy male college students had completed an open-ended questionnaire about difficult wartime experiences. In the late 1980s, Peterson and his colleagues reviewed the men’s questionnaire responses to obtain a measure of explanatory style—their habitual ways of explaining bad events that happen to them. More pessimistic people tend to blame themselves and expect long-term negative consequences that affect many aspects of their lives, while more optimistic people tend to blame outside forces and expect limited negative consequences. To obtain a measure of explanatory style for each participant, the researchers used a procedure in which all negative events mentioned in the questionnaire responses, and any causal explanations for them, were identified and written on index cards. These were given to a separate group of raters who rated each explanation in terms of three separate dimensions of optimism-pessimism. These ratings were then averaged to produce an explanatory style score for each participant. The researchers then assessed the statistical relationship between the men’s explanatory style as college students and archival measures of their health at approximately 60 years of age. The primary result was that the more optimistic the men were as college students, the healthier they were as older men. Pearson’s r was +.25.

This is an example of content analysis —a family of systematic approaches to measurement using complex archival data. Just as naturalistic observation requires specifying the behaviors of interest and then noting them as they occur, content analysis requires specifying keywords, phrases, or ideas and then finding all occurrences of them in the data. These occurrences can then be counted, timed (e.g., the amount of time devoted to entertainment topics on the nightly news show), or analyzed in a variety of other ways.

Key Takeaways

  • Correlational research involves measuring two variables and assessing the relationship between them, with no manipulation of an independent variable.
  • Correlational research is not defined by where or how the data are collected. However, some approaches to data collection are strongly associated with correlational research. These include naturalistic observation (in which researchers observe people’s behavior in the context in which it normally occurs) and the use of archival data that were already collected for some other purpose.

Discussion: For each of the following, decide whether it is most likely that the study described is experimental or correlational and explain why.

  • An educational researcher compares the academic performance of students from the “rich” side of town with that of students from the “poor” side of town.
  • A cognitive psychologist compares the ability of people to recall words that they were instructed to “read” with their ability to recall words that they were instructed to “imagine.”
  • A manager studies the correlation between new employees’ college grade point averages and their first-year performance reports.
  • An automotive engineer installs different stick shifts in a new car prototype, each time asking several people to rate how comfortable the stick shift feels.
  • A food scientist studies the relationship between the temperature inside people’s refrigerators and the amount of bacteria on their food.
  • A social psychologist tells some research participants that they need to hurry over to the next building to complete a study. She tells others that they can take their time. Then she observes whether they stop to help a research assistant who is pretending to be hurt.

Kanner, A. D., Coyne, J. C., Schaefer, C., & Lazarus, R. S. (1981). Comparison of two modes of stress measurement: Daily hassles and uplifts versus major life events. Journal of Behavioral Medicine, 4 , 1–39.

Kraut, R. E., & Johnston, R. E. (1979). Social and emotional messages of smiling: An ethological approach. Journal of Personality and Social Psychology, 37 , 1539–1553.

Levine, R. V., & Norenzayan, A. (1999). The pace of life in 31 countries. Journal of Cross-Cultural Psychology, 30 , 178–205.

Pelham, B. W., Carvallo, M., & Jones, J. T. (2005). Implicit egotism. Current Directions in Psychological Science, 14 , 106–110.

Peterson, C., Seligman, M. E. P., & Vaillant, G. E. (1988). Pessimistic explanatory style is a risk factor for physical illness: A thirty-five year longitudinal study. Journal of Personality and Social Psychology, 55 , 23–27.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

CodeAvail

Top 150+ Correlational Research Topics For Students [2024]

Correlational Research Topics For Students

Correlational research looks at how two or more things relate without saying one causes the other. It tries to find patterns and connections between different things to see how changes in one might be connected to changes in another.

In education, correlational studies are super important because they help us understand how different factors affect how well students learn. Whether looking at teaching methods or considering students’ backgrounds, correlational research helps teachers determine how to help students do better in school.

Our blog is here to give students interesting correlational research topics. We want to make it easy for students to find ideas and get excited about doing research. 

We aim to get you thinking and curious about how things are connected so you can learn more about them.

What is Correlation? An Introduction

Table of Contents

Correlation is defined as how two variables change simultaneously. It helps us comprehend their relationship. 

When two variables are correlated, changes in one tend to be associated with changes in the other, but it doesn’t necessarily mean that one causes the other. 

Correlation can be positive, meaning both variables move in the same direction, or negative, where they move in opposite directions. 

Understanding correlation is crucial in various fields like science, economics, and social sciences, as it allows us to identify patterns, make predictions, and better comprehend the complexities of the world around us.

Also Read: “ Top 151+ Quantitative Research Topics for ABM Students “.

Benefits of Correlational Research Topics For Students

Correlational research topics offer numerous benefits for students, allowing them to explore relationships between variables and understand the complexity of real-world phenomena. Here are several benefits of correlational research topics for students:

Enhances critical thinking skills

Engaging in correlational research encourages students to analyze data, draw conclusions, and evaluate the relationships between variables, fostering critical thinking abilities.

Provides real-world application

Correlational research topics often relate to everyday phenomena, allowing students to apply theoretical concepts to practical situations promoting a deeper understanding of the subject matter.

Fosters research skills

Conducting correlational studies equips students with valuable research skills, including data collection, analysis, and interpretation, essential for academic and professional success.

Stimulates curiosity and creativity

Exploring correlational research topics ignites curiosity and creativity, inspiring students to explore new ideas, generate hypotheses, and develop innovative solutions to complex problems.

Prepares for future academic pursuits

Engaging in correlational research prepares students for future academic endeavors by honing their research abilities and preparing them for more advanced research projects at higher levels of education.

List of Interesting Correlational Research Topics For Students

Here’s a list of interesting correlational research topics for students across various disciplines:

  • The correlation between teacher enthusiasm and student engagement.
  • The relationship between parental involvement and student academic performance.
  • Correlating study habits with GPA in high school students.
  • The impact of class size on student achievement.
  • Relationship between technology use and learning outcomes.
  • Correlation between sleep quality and academic success in college students.
  • The correlation between extracurricular activity and academic achievement.
  • Correlation between self-esteem and academic achievement.
  • The influence of school climate on student behavior and achievement.
  • Relationship between student-teacher rapport and academic success.

Health and Wellness

  • Correlation between exercise frequency and mental health.
  • Relationship between diet and stress levels in college students.
  • The impact of social support on overall health.
  • Correlating screen time with sleep quality in adolescents.
  • The relationship between mindfulness practices and emotional well-being.
  • Correlation between access to green spaces and physical activity levels.
  • The influence of peer pressure on health-related behaviors.
  • Relationship between music preference and stress reduction.
  • The correlation between pet ownership and mental health.
  • The relationship between outdoor recreation and overall wellness.

Social Sciences

  • Correlation between socioeconomic status and academic achievement.
  • The link between social media usage and self-esteem.
  • The impact of family structure on social behavior.
  • Correlation between political ideology and charitable giving.
  • Relationship between cultural background and communication styles.
  • The influence of peer group on academic motivation.
  • Correlation between media consumption and attitudes towards diversity.
  • Relationship between personality traits and career success.
  • The impact of community involvement on civic engagement.
  • Correlation between volunteering and life satisfaction.

Technology and Society

  • The relationship between smartphone use and attention span.
  • Correlation between video game usage and problem-solving skills.
  • The influence of social media on interpersonal relationships.
  • Relationship between Internet usage and academic performance.
  • Correlation between online shopping habits and financial literacy.
  • The impact of digital literacy on job opportunities.
  • Relationship between virtual reality exposure and empathy levels.
  • Correlation between social networking and political engagement.
  • The relationship between technology use and environmental awareness.
  • Correlation between online activism and real-world action.

Economics and Finance

  • The relationship between household income and savings behavior.
  • Correlation between education level and earning potential.
  • The impact of inflation on consumer spending habits.
  • Relationship between stock market performance and consumer confidence.
  • Correlation between financial literacy and debt management.
  • The influence of advertising on consumer purchasing decisions.
  • Relationship between economic growth and unemployment rates.
  • Correlation between housing prices and neighborhood demographics.
  • The relationship between government spending and economic growth.
  • Correlation between education funding and student outcomes.

Environmental Studies

  • The relationship between air pollution and respiratory health.
  • Correlation between waste management practices and environmental sustainability.
  • The impact of deforestation on biodiversity.
  • Relationship between climate change awareness and pro-environmental behaviors.
  • Correlation between water quality and public health.
  • The influence of renewable energy adoption on greenhouse gas emissions.
  • Relationship between urbanization and wildlife habitat loss.
  • Correlation between environmental regulations and industry practices.
  • The relationship between sustainable agriculture and food security.
  • Correlation between green infrastructure and urban heat island effect.
  • The link between childhood trauma and adult mental health.
  • Correlation between personality type and career choice.
  • The effects of early attachment types on romantic relationships.
  • Relationship between parental discipline strategies and child behavior.
  • Correlation between introversion/extroversion and social networking.
  • The effect of peer pressure on risk-taking behavior.
  • The link between body image and social media use.
  • Correlation between anxiety levels and academic performance.
  • The relationship between self-esteem and relationship satisfaction.
  • Correlation between happiness levels and gratitude practices.

Criminal Justice

  • The association between childhood trauma and adult mental health.
  • Correlation between access to education and recidivism rates.
  • The impact of community policing on crime prevention.
  • Relationship between substance abuse and criminal behavior.
  • Correlation between gun control laws and violent crime rates.
  • The influence of media portrayal on perceptions of crime.
  • Relationship between juvenile delinquency and family dynamics.
  • Correlation between sentencing disparities and race.
  • The relationship between policing tactics and public trust.
  • Correlation between restorative justice programs and rehabilitation rates.

Business and Management

  • The relationship between employee satisfaction and productivity.
  • Correlation between leadership style and team performance.
  • The impact of workplace diversity on organizational success.
  • The link between staff training programs and work happiness.
  • Correlation between customer satisfaction and repeat business.
  • The impact of company culture on employee turnover.
  • Relationship between ethical business practices and consumer trust.
  • Correlation between innovation and market competitiveness.
  • The relationship between employee engagement and company profitability.
  • Correlation between marketing strategies and brand loyalty.

Media and Communication

  • The link between media consumption and political polarization.
  • Correlation between advertising exposure and consumer behavior.
  • The influence of media depiction on body image.
  • Relationship between news consumption and knowledge of current events.
  • Correlation between social media usage and interpersonal communication skills.
  • The influence of celebrity endorsements on brand perception.
  • Relationship between media violence exposure and aggression levels.
  • Correlation between news bias and public opinion.
  • The link between media literacy and critical thinking abilities.
  • Correlation between reality television consumption and social attitudes.

Culture and Society

  • The relationship between cultural diversity and creativity.
  • Correlation between cultural heritage preservation and community identity.
  • The impact of globalization on cultural values.
  • Relationship between language diversity and social cohesion.
  • Correlation between cultural norms and attitudes towards gender roles.
  • Communication styles are influenced by cultural background.
  • Relationship between cultural assimilation and mental health.
  • Correlation between cultural festivals and community bonding.
  • The relationship between cultural stereotypes and prejudice.
  • Correlation between cultural adaptation and immigrant integration.

Sports and Recreation

  • The relationship between sports participation and academic achievement.
  • Correlation between exercise frequency and stress reduction.
  • The impact of sports team success on school spirit.
  • Relationship between youth sports involvement and leadership skills.
  • Correlation between sports fandom and social connections.
  • The influence of sports participation on self-esteem.
  • Relationship between sportsmanship and moral development.
  • Correlation between coaching style and athlete motivation.
  • The relationship between sports injuries and long-term health outcomes.
  • Correlation between sports specialization and athletic performance.

Science and Technology

  • The relationship between science education and technological innovation.
  • Correlation between technology use and environmental impact.
  • The impact of science literacy on public policy attitudes.
  • Relationship between STEM education and career opportunities.
  • Correlation between scientific research funding and breakthrough discoveries.
  • The influence of technology on scientific research methodologies.
  • Relationship between science communication and public understanding.
  • Correlation between technological advancements and quality of life.
  • The relationship between science engagement and environmental conservation efforts.
  • Correlation between technology adoption and societal changes.

Language and Linguistics

  • The relationship between bilingualism and cognitive development.
  • Correlation between language proficiency and academic success.
  • The impact of language diversity on social integration.
  • Relationship between language acquisition and brain development.
  • Correlation between language use and cultural preservation.
  • The influence of language barriers on access to healthcare.
  • Relationship between language learning strategies and proficiency levels.
  • Correlation between language policies and educational outcomes.
  • The relationship between language evolution and societal change.
  • Correlation between language dialects and regional identities.

Travel and Tourism

  • The relationship between travel experiences and cultural awareness.
  • Correlation between tourism development and economic growth.
  • The impact of travel restrictions on tourism industries.
  • Relationship between destination marketing and tourist arrivals.
  • Correlation between travel preferences and personality traits.
  • The influence of travel experiences on personal growth.
  • Relationship between travel safety perceptions and tourist behavior.
  • Correlation between travel motivations and destination choices.
  • The relationship between travel blogging and destination popularity.
  • Correlation between travel trends and environmental sustainability.
  • The relationship between public transportation accessibility and urban development .

These topics offer students various possibilities for conducting correlational research across various domains, allowing them to explore meaningful relationships between different variables and contribute to existing knowledge.

Tips for Conducting Correlational Research

Conducting correlational research requires careful planning, attention to detail, and adherence to established research methodologies . Here are some tips to help students conduct correlational research effectively:

1. Clearly define variables

Identify the variables you want to study and ensure they are measurable and relevant to your research question.

2. Choose appropriate measures

Select reliable and valid measures for each variable to capture the data accurately.

3. Collect sufficient data

Ensure your sample size is large enough to detect meaningful correlations and consider diverse populations if applicable.

4. Use appropriate statistical analysis

Employ statistical techniques like the Pearson correlation coefficient to analyze the relationship between variables.

5. Consider potential confounding variables

Be aware of other factors that may influence the correlation and control for them if possible.

6. Interpret results cautiously

Remember that correlation does not imply causation; consider alternative explanations for observed relationships.

7. Communicate findings effectively

Present your results clearly and accurately, including any limitations or caveats in your interpretations.

Correlational research topics offer invaluable insights into the intricate relationships between variables across diverse fields. 

Researchers can uncover patterns, make predictions, and deepen our understanding of complex phenomena by exploring correlations. While correlational studies do not establish causation, they provide a foundational framework for further investigation and practical applications.

Through meticulous analysis and interpretation, correlational research contributes to advancements in education, health, social sciences, and beyond. 

As we continue to explore the interconnectedness of variables, correlational research remains a powerful tool for unraveling the mysteries of the world around us and driving progress in various fields.

What is the difference between correlational research and experimental research?

Correlational research examines the relationship between variables without manipulating them, while experimental research involves manipulating variables to determine cause-and-effect relationships. Experimental research allows for stronger causal inferences compared to correlational research.

What are some strengths and weaknesses of correlational research? 

Strengths include being relatively inexpensive and efficient and avoiding manipulation, which might be unethical. Weaknesses include not establishing causality and being susceptible to confounding variables.

Can correlational research establish causation between variables?

No, correlational research cannot establish causation between variables. While it can identify relationships and associations, it does not manipulate variables to determine cause-and-effect, making it unable to establish causal relationships definitively.

What are some common pitfalls to avoid when conducting correlational research?

Common pitfalls in correlational research include mistaking correlation for causation, failing to control for confounding variables, relying on small or biased samples, and neglecting to consider the directionality or third-variable explanations for observed correlations.

Related Posts

8 easiest programming language to learn for beginners.

There are so many programming languages you can learn. But if you’re looking to start with something easier. We bring to you a list of…

10 Online Tutoring Help Benefits

Do you need a computer science assignment help? Get the best quality assignment help from computer science tutors at affordable prices. They always presented to help…

  • How it works

researchprospect post subheader

Correlational Research – Steps & Examples

Published by Carmen Troy at August 14th, 2021 , Revised On August 29, 2023

In correlational  research design , a researcher measures the association between two or more variables or sets of scores. A researcher doesn’t have control over the  variables .

Example:  Relationship between income and age.

Types of Correlations

Based on the number of variables

Type of correlation Definition Example
Simple correlation A simple correlation aims at studying the relationship between only two variables. Correlation between height and weight.
Partial correlation In partial correlation, you consider multiple variables but focus on the relationship between them and assume other variables as constant. Correlation between investment and profit when the influence of production cost and advertisement cost remains constant.
Multiple correlations Multiple correlations aim at studying the association between three or more variables. Capital, production, Cost, Advertisement cost, and profit.

Based on the direction of change of variables

Type of correlation Definition Example
Positive correlation The two variables change in a similar direction. If fat increases, the weight also increases.
Negative correlation The two variables change in the opposite direction. Drinking warm water decreases body fat.
Zero correlation The two variables are not interrelated. There is no relationship between drinking water and increasing height.

When to Use Correlation Design?

Correlation research design is used when experimental studies are difficult to design. 

Example: You want to know the impact of tobacco on people’s health and the extent of their addiction. You can’t distribute tobacco among your participants to understand its effect and addiction level. Instead of it, you can collect information from the people who are already addicted to tobacco and affected by it.

It is used to identify the association between two or more variables.

Example: You want to find out whether there is a correlation between the increasing population and poverty among the people. You don’t think that an increasing population leads to unemployment, but identifying a relationship can help you find a better answer to your study.

Example: You want to find out whether high income causes obesity. However, you don’t see any relationship. However, you can still find out the association between the lifestyle, age, and eating patterns of the people to make predictions of your research question.

Does your Research Methodology Have the Following?

  • Great Research/Sources
  • Perfect Language
  • Accurate Sources

If not, we can help. Our panel of experts makes sure to keep the 3 pillars of Research Methodology strong.

Does your Research Methodology Have the Following?

How to Conduct Correlation Research?

Step 1: select the problem.

You can select the issues according to the requirement of your research. There are three common types of problems as follows;

  • Is there any relationship between the two variables?
  • How well does a variable predict another variable?
  • What could be the association between a large number of variables and what predictions you can make?

Step 2: Select the Sample

You need to  select the sample  carefully and randomly if necessary. Your sample size should not be more than 30.

Step 3: Collect the Data

There are  various types of data collection methods  used in correlational research. The most common methods used for data collection are as follows:

Surveys  are the most frequently used method for collecting data. It helps find the association between variables based on the participants’ responses selected for the study. You can carry out the surveys online, face-to-face, and on the phone. 

Example: You want to find out the association between poverty and unemployment. You need to distribute a questionnaire about the sources of income and expenses among the participants. You can analyse the information obtained to identify whether unemployment leads to poverty.

Pros Cons
Easy to conduct. You get quick responses. Responses may not be reliable or dishonest. Some questions may not be easier to analyse

Naturalistic Observation

In the naturalistic observation method, you need to collect the participants’ data by observing them in their natural surroundings. You can consider it as a type of field research. You can observe people and gather information from them in various public places such as stores, malls, parks, playgrounds, etc. The participants are not informed about the research. However, you need to ensure the anonymity of the participants. It includes both qualitative and quantitative data.

Example: You want to find out the correlation between the price hike of vegetables and whether changes. You need to visit the market and talk to vegetable vendors to collect the required information.  You can categorise the information according to the price, whether change effects and challenges the vendors/farmers face during such periods.

Pros Cons
 

It can be conducted in a natural environment. The observation is natural without any manipulation. It provides better qualitative data.
A researcher cannot control the variables. Lack of rigidity and standardisation.

Archival Data

Archival data is a type of data or information that already exists. Instead of collecting new data, you can use the existing data in your research if it fulfills your research requirements. Generally, previous studies or theories, records, documents, and transcripts are used as the primary source of information. This type of research is also called retrospective research.

Example: Suppose you want to find out the relation between exercise and weight loss. You can use various scholarly journals, health records, and scientific studies and discoveries based on people’s age and gender. You can identify whether exercise leads to significant weight loss among people of various ages and gender.

Pros Cons
The researcher has control over variables. Easy to establish the relationship between  cause and effect. Inexpensive and convenient. The artificial environment may impact the behaviour of the participants. Inaccurate results
Pros Cons
Cost-effective Suitable for trend analysis and identification. An ample amount of existing data is available. You need to manipulate data to make it relevant. Information may be incomplete or inaccurate.

What is Causation?

The association between cause and effect is called  causation . You can identify the correlation between the two variables, but they may not influence each other. It can be considered as the limitation of correlation research.

Example: You’ve found that people who exercise regularly lost maximum weight. However, it doesn’t prove that people who don’t use will gain weight. There could be many other possible variables, such as a healthy diet, age, stress, gender, and health condition, impacting people’s weight. You can’t find out the causation of your research problem. Still, you can collect and analyse data to support the theory. You can only predict the possibilities of the method, phenomena, or problem you are studying.

Frequently Asked Questions

How to describe correlational research.

Correlational research examines the relationship between two or more variables. It doesn’t imply causation but measures the strength and direction of association. Statistical analysis determines if changes in one variable correspond to changes in another, helping understand patterns and predict outcomes.

You May Also Like

Ethnography is a type of research where a researcher observes the people in their natural environment. Here is all you need to know about ethnography.

Baffled by the concept of reliability and validity? Reliability refers to the consistency of measurement. Validity refers to the accuracy of measurement.

A confounding variable can potentially affect both the suspected cause and the suspected effect. Here is all you need to know about accounting for confounding variables in research.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works
  • Privacy Policy

Research Method

Home » 500+ Quantitative Research Titles and Topics

500+ Quantitative Research Titles and Topics

Table of Contents

Quantitative Research Topics

Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology , economics , and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there are numerous areas to explore, from analyzing data on a specific population to studying the effects of a particular intervention or treatment. In this post, we will provide some ideas for quantitative research topics that may inspire you and help you narrow down your interests.

Quantitative Research Titles

Quantitative Research Titles are as follows:

Business and Economics

  • “Statistical Analysis of Supply Chain Disruptions on Retail Sales”
  • “Quantitative Examination of Consumer Loyalty Programs in the Fast Food Industry”
  • “Predicting Stock Market Trends Using Machine Learning Algorithms”
  • “Influence of Workplace Environment on Employee Productivity: A Quantitative Study”
  • “Impact of Economic Policies on Small Businesses: A Regression Analysis”
  • “Customer Satisfaction and Profit Margins: A Quantitative Correlation Study”
  • “Analyzing the Role of Marketing in Brand Recognition: A Statistical Overview”
  • “Quantitative Effects of Corporate Social Responsibility on Consumer Trust”
  • “Price Elasticity of Demand for Luxury Goods: A Case Study”
  • “The Relationship Between Fiscal Policy and Inflation Rates: A Time-Series Analysis”
  • “Factors Influencing E-commerce Conversion Rates: A Quantitative Exploration”
  • “Examining the Correlation Between Interest Rates and Consumer Spending”
  • “Standardized Testing and Academic Performance: A Quantitative Evaluation”
  • “Teaching Strategies and Student Learning Outcomes in Secondary Schools: A Quantitative Study”
  • “The Relationship Between Extracurricular Activities and Academic Success”
  • “Influence of Parental Involvement on Children’s Educational Achievements”
  • “Digital Literacy in Primary Schools: A Quantitative Assessment”
  • “Learning Outcomes in Blended vs. Traditional Classrooms: A Comparative Analysis”
  • “Correlation Between Teacher Experience and Student Success Rates”
  • “Analyzing the Impact of Classroom Technology on Reading Comprehension”
  • “Gender Differences in STEM Fields: A Quantitative Analysis of Enrollment Data”
  • “The Relationship Between Homework Load and Academic Burnout”
  • “Assessment of Special Education Programs in Public Schools”
  • “Role of Peer Tutoring in Improving Academic Performance: A Quantitative Study”

Medicine and Health Sciences

  • “The Impact of Sleep Duration on Cardiovascular Health: A Cross-sectional Study”
  • “Analyzing the Efficacy of Various Antidepressants: A Meta-Analysis”
  • “Patient Satisfaction in Telehealth Services: A Quantitative Assessment”
  • “Dietary Habits and Incidence of Heart Disease: A Quantitative Review”
  • “Correlations Between Stress Levels and Immune System Functioning”
  • “Smoking and Lung Function: A Quantitative Analysis”
  • “Influence of Physical Activity on Mental Health in Older Adults”
  • “Antibiotic Resistance Patterns in Community Hospitals: A Quantitative Study”
  • “The Efficacy of Vaccination Programs in Controlling Disease Spread: A Time-Series Analysis”
  • “Role of Social Determinants in Health Outcomes: A Quantitative Exploration”
  • “Impact of Hospital Design on Patient Recovery Rates”
  • “Quantitative Analysis of Dietary Choices and Obesity Rates in Children”

Social Sciences

  • “Examining Social Inequality through Wage Distribution: A Quantitative Study”
  • “Impact of Parental Divorce on Child Development: A Longitudinal Study”
  • “Social Media and its Effect on Political Polarization: A Quantitative Analysis”
  • “The Relationship Between Religion and Social Attitudes: A Statistical Overview”
  • “Influence of Socioeconomic Status on Educational Achievement”
  • “Quantifying the Effects of Community Programs on Crime Reduction”
  • “Public Opinion and Immigration Policies: A Quantitative Exploration”
  • “Analyzing the Gender Representation in Political Offices: A Quantitative Study”
  • “Impact of Mass Media on Public Opinion: A Regression Analysis”
  • “Influence of Urban Design on Social Interactions in Communities”
  • “The Role of Social Support in Mental Health Outcomes: A Quantitative Analysis”
  • “Examining the Relationship Between Substance Abuse and Employment Status”

Engineering and Technology

  • “Performance Evaluation of Different Machine Learning Algorithms in Autonomous Vehicles”
  • “Material Science: A Quantitative Analysis of Stress-Strain Properties in Various Alloys”
  • “Impacts of Data Center Cooling Solutions on Energy Consumption”
  • “Analyzing the Reliability of Renewable Energy Sources in Grid Management”
  • “Optimization of 5G Network Performance: A Quantitative Assessment”
  • “Quantifying the Effects of Aerodynamics on Fuel Efficiency in Commercial Airplanes”
  • “The Relationship Between Software Complexity and Bug Frequency”
  • “Machine Learning in Predictive Maintenance: A Quantitative Analysis”
  • “Wearable Technologies and their Impact on Healthcare Monitoring”
  • “Quantitative Assessment of Cybersecurity Measures in Financial Institutions”
  • “Analysis of Noise Pollution from Urban Transportation Systems”
  • “The Influence of Architectural Design on Energy Efficiency in Buildings”

Quantitative Research Topics

Quantitative Research Topics are as follows:

  • The effects of social media on self-esteem among teenagers.
  • A comparative study of academic achievement among students of single-sex and co-educational schools.
  • The impact of gender on leadership styles in the workplace.
  • The correlation between parental involvement and academic performance of students.
  • The effect of mindfulness meditation on stress levels in college students.
  • The relationship between employee motivation and job satisfaction.
  • The effectiveness of online learning compared to traditional classroom learning.
  • The correlation between sleep duration and academic performance among college students.
  • The impact of exercise on mental health among adults.
  • The relationship between social support and psychological well-being among cancer patients.
  • The effect of caffeine consumption on sleep quality.
  • A comparative study of the effectiveness of cognitive-behavioral therapy and pharmacotherapy in treating depression.
  • The relationship between physical attractiveness and job opportunities.
  • The correlation between smartphone addiction and academic performance among high school students.
  • The impact of music on memory recall among adults.
  • The effectiveness of parental control software in limiting children’s online activity.
  • The relationship between social media use and body image dissatisfaction among young adults.
  • The correlation between academic achievement and parental involvement among minority students.
  • The impact of early childhood education on academic performance in later years.
  • The effectiveness of employee training and development programs in improving organizational performance.
  • The relationship between socioeconomic status and access to healthcare services.
  • The correlation between social support and academic achievement among college students.
  • The impact of technology on communication skills among children.
  • The effectiveness of mindfulness-based stress reduction programs in reducing symptoms of anxiety and depression.
  • The relationship between employee turnover and organizational culture.
  • The correlation between job satisfaction and employee engagement.
  • The impact of video game violence on aggressive behavior among children.
  • The effectiveness of nutritional education in promoting healthy eating habits among adolescents.
  • The relationship between bullying and academic performance among middle school students.
  • The correlation between teacher expectations and student achievement.
  • The impact of gender stereotypes on career choices among high school students.
  • The effectiveness of anger management programs in reducing violent behavior.
  • The relationship between social support and recovery from substance abuse.
  • The correlation between parent-child communication and adolescent drug use.
  • The impact of technology on family relationships.
  • The effectiveness of smoking cessation programs in promoting long-term abstinence.
  • The relationship between personality traits and academic achievement.
  • The correlation between stress and job performance among healthcare professionals.
  • The impact of online privacy concerns on social media use.
  • The effectiveness of cognitive-behavioral therapy in treating anxiety disorders.
  • The relationship between teacher feedback and student motivation.
  • The correlation between physical activity and academic performance among elementary school students.
  • The impact of parental divorce on academic achievement among children.
  • The effectiveness of diversity training in improving workplace relationships.
  • The relationship between childhood trauma and adult mental health.
  • The correlation between parental involvement and substance abuse among adolescents.
  • The impact of social media use on romantic relationships among young adults.
  • The effectiveness of assertiveness training in improving communication skills.
  • The relationship between parental expectations and academic achievement among high school students.
  • The correlation between sleep quality and mood among adults.
  • The impact of video game addiction on academic performance among college students.
  • The effectiveness of group therapy in treating eating disorders.
  • The relationship between job stress and job performance among teachers.
  • The correlation between mindfulness and emotional regulation.
  • The impact of social media use on self-esteem among college students.
  • The effectiveness of parent-teacher communication in promoting academic achievement among elementary school students.
  • The impact of renewable energy policies on carbon emissions
  • The relationship between employee motivation and job performance
  • The effectiveness of psychotherapy in treating eating disorders
  • The correlation between physical activity and cognitive function in older adults
  • The effect of childhood poverty on adult health outcomes
  • The impact of urbanization on biodiversity conservation
  • The relationship between work-life balance and employee job satisfaction
  • The effectiveness of eye movement desensitization and reprocessing (EMDR) in treating trauma
  • The correlation between parenting styles and child behavior
  • The effect of social media on political polarization
  • The impact of foreign aid on economic development
  • The relationship between workplace diversity and organizational performance
  • The effectiveness of dialectical behavior therapy in treating borderline personality disorder
  • The correlation between childhood abuse and adult mental health outcomes
  • The effect of sleep deprivation on cognitive function
  • The impact of trade policies on international trade and economic growth
  • The relationship between employee engagement and organizational commitment
  • The effectiveness of cognitive therapy in treating postpartum depression
  • The correlation between family meals and child obesity rates
  • The effect of parental involvement in sports on child athletic performance
  • The impact of social entrepreneurship on sustainable development
  • The relationship between emotional labor and job burnout
  • The effectiveness of art therapy in treating dementia
  • The correlation between social media use and academic procrastination
  • The effect of poverty on childhood educational attainment
  • The impact of urban green spaces on mental health
  • The relationship between job insecurity and employee well-being
  • The effectiveness of virtual reality exposure therapy in treating anxiety disorders
  • The correlation between childhood trauma and substance abuse
  • The effect of screen time on children’s social skills
  • The impact of trade unions on employee job satisfaction
  • The relationship between cultural intelligence and cross-cultural communication
  • The effectiveness of acceptance and commitment therapy in treating chronic pain
  • The correlation between childhood obesity and adult health outcomes
  • The effect of gender diversity on corporate performance
  • The impact of environmental regulations on industry competitiveness.
  • The impact of renewable energy policies on greenhouse gas emissions
  • The relationship between workplace diversity and team performance
  • The effectiveness of group therapy in treating substance abuse
  • The correlation between parental involvement and social skills in early childhood
  • The effect of technology use on sleep patterns
  • The impact of government regulations on small business growth
  • The relationship between job satisfaction and employee turnover
  • The effectiveness of virtual reality therapy in treating anxiety disorders
  • The correlation between parental involvement and academic motivation in adolescents
  • The effect of social media on political engagement
  • The impact of urbanization on mental health
  • The relationship between corporate social responsibility and consumer trust
  • The correlation between early childhood education and social-emotional development
  • The effect of screen time on cognitive development in young children
  • The impact of trade policies on global economic growth
  • The relationship between workplace diversity and innovation
  • The effectiveness of family therapy in treating eating disorders
  • The correlation between parental involvement and college persistence
  • The effect of social media on body image and self-esteem
  • The impact of environmental regulations on business competitiveness
  • The relationship between job autonomy and job satisfaction
  • The effectiveness of virtual reality therapy in treating phobias
  • The correlation between parental involvement and academic achievement in college
  • The effect of social media on sleep quality
  • The impact of immigration policies on social integration
  • The relationship between workplace diversity and employee well-being
  • The effectiveness of psychodynamic therapy in treating personality disorders
  • The correlation between early childhood education and executive function skills
  • The effect of parental involvement on STEM education outcomes
  • The impact of trade policies on domestic employment rates
  • The relationship between job insecurity and mental health
  • The effectiveness of exposure therapy in treating PTSD
  • The correlation between parental involvement and social mobility
  • The effect of social media on intergroup relations
  • The impact of urbanization on air pollution and respiratory health.
  • The relationship between emotional intelligence and leadership effectiveness
  • The effectiveness of cognitive-behavioral therapy in treating depression
  • The correlation between early childhood education and language development
  • The effect of parental involvement on academic achievement in STEM fields
  • The impact of trade policies on income inequality
  • The relationship between workplace diversity and customer satisfaction
  • The effectiveness of mindfulness-based therapy in treating anxiety disorders
  • The correlation between parental involvement and civic engagement in adolescents
  • The effect of social media on mental health among teenagers
  • The impact of public transportation policies on traffic congestion
  • The relationship between job stress and job performance
  • The effectiveness of group therapy in treating depression
  • The correlation between early childhood education and cognitive development
  • The effect of parental involvement on academic motivation in college
  • The impact of environmental regulations on energy consumption
  • The relationship between workplace diversity and employee engagement
  • The effectiveness of art therapy in treating PTSD
  • The correlation between parental involvement and academic success in vocational education
  • The effect of social media on academic achievement in college
  • The impact of tax policies on economic growth
  • The relationship between job flexibility and work-life balance
  • The effectiveness of acceptance and commitment therapy in treating anxiety disorders
  • The correlation between early childhood education and social competence
  • The effect of parental involvement on career readiness in high school
  • The impact of immigration policies on crime rates
  • The relationship between workplace diversity and employee retention
  • The effectiveness of play therapy in treating trauma
  • The correlation between parental involvement and academic success in online learning
  • The effect of social media on body dissatisfaction among women
  • The impact of urbanization on public health infrastructure
  • The relationship between job satisfaction and job performance
  • The effectiveness of eye movement desensitization and reprocessing therapy in treating PTSD
  • The correlation between early childhood education and social skills in adolescence
  • The effect of parental involvement on academic achievement in the arts
  • The impact of trade policies on foreign investment
  • The relationship between workplace diversity and decision-making
  • The effectiveness of exposure and response prevention therapy in treating OCD
  • The correlation between parental involvement and academic success in special education
  • The impact of zoning laws on affordable housing
  • The relationship between job design and employee motivation
  • The effectiveness of cognitive rehabilitation therapy in treating traumatic brain injury
  • The correlation between early childhood education and social-emotional learning
  • The effect of parental involvement on academic achievement in foreign language learning
  • The impact of trade policies on the environment
  • The relationship between workplace diversity and creativity
  • The effectiveness of emotion-focused therapy in treating relationship problems
  • The correlation between parental involvement and academic success in music education
  • The effect of social media on interpersonal communication skills
  • The impact of public health campaigns on health behaviors
  • The relationship between job resources and job stress
  • The effectiveness of equine therapy in treating substance abuse
  • The correlation between early childhood education and self-regulation
  • The effect of parental involvement on academic achievement in physical education
  • The impact of immigration policies on cultural assimilation
  • The relationship between workplace diversity and conflict resolution
  • The effectiveness of schema therapy in treating personality disorders
  • The correlation between parental involvement and academic success in career and technical education
  • The effect of social media on trust in government institutions
  • The impact of urbanization on public transportation systems
  • The relationship between job demands and job stress
  • The correlation between early childhood education and executive functioning
  • The effect of parental involvement on academic achievement in computer science
  • The effectiveness of cognitive processing therapy in treating PTSD
  • The correlation between parental involvement and academic success in homeschooling
  • The effect of social media on cyberbullying behavior
  • The impact of urbanization on air quality
  • The effectiveness of dance therapy in treating anxiety disorders
  • The correlation between early childhood education and math achievement
  • The effect of parental involvement on academic achievement in health education
  • The impact of global warming on agriculture
  • The effectiveness of narrative therapy in treating depression
  • The correlation between parental involvement and academic success in character education
  • The effect of social media on political participation
  • The impact of technology on job displacement
  • The relationship between job resources and job satisfaction
  • The effectiveness of art therapy in treating addiction
  • The correlation between early childhood education and reading comprehension
  • The effect of parental involvement on academic achievement in environmental education
  • The impact of income inequality on social mobility
  • The relationship between workplace diversity and organizational culture
  • The effectiveness of solution-focused brief therapy in treating anxiety disorders
  • The correlation between parental involvement and academic success in physical therapy education
  • The effect of social media on misinformation
  • The impact of green energy policies on economic growth
  • The relationship between job demands and employee well-being
  • The correlation between early childhood education and science achievement
  • The effect of parental involvement on academic achievement in religious education
  • The impact of gender diversity on corporate governance
  • The relationship between workplace diversity and ethical decision-making
  • The correlation between parental involvement and academic success in dental hygiene education
  • The effect of social media on self-esteem among adolescents
  • The impact of renewable energy policies on energy security
  • The effect of parental involvement on academic achievement in social studies
  • The impact of trade policies on job growth
  • The relationship between workplace diversity and leadership styles
  • The correlation between parental involvement and academic success in online vocational training
  • The effect of social media on self-esteem among men
  • The impact of urbanization on air pollution levels
  • The effectiveness of music therapy in treating depression
  • The correlation between early childhood education and math skills
  • The effect of parental involvement on academic achievement in language arts
  • The impact of immigration policies on labor market outcomes
  • The effectiveness of hypnotherapy in treating phobias
  • The effect of social media on political engagement among young adults
  • The impact of urbanization on access to green spaces
  • The relationship between job crafting and job satisfaction
  • The effectiveness of exposure therapy in treating specific phobias
  • The correlation between early childhood education and spatial reasoning
  • The effect of parental involvement on academic achievement in business education
  • The impact of trade policies on economic inequality
  • The effectiveness of narrative therapy in treating PTSD
  • The correlation between parental involvement and academic success in nursing education
  • The effect of social media on sleep quality among adolescents
  • The impact of urbanization on crime rates
  • The relationship between job insecurity and turnover intentions
  • The effectiveness of pet therapy in treating anxiety disorders
  • The correlation between early childhood education and STEM skills
  • The effect of parental involvement on academic achievement in culinary education
  • The impact of immigration policies on housing affordability
  • The relationship between workplace diversity and employee satisfaction
  • The effectiveness of mindfulness-based stress reduction in treating chronic pain
  • The correlation between parental involvement and academic success in art education
  • The effect of social media on academic procrastination among college students
  • The impact of urbanization on public safety services.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

American History Research Paper Topics

300+ American History Research Paper Topics

Criminal Justice Research Topics

500+ Criminal Justice Research Topics

Physics Research Topics

500+ Physics Research Topics

Statistics Research Topics

500+ Statistics Research Topics

Google Scholar Research Topics

500+ Google Scholar Research Topics

Economics Research Topics

500+ Economics Research Topics

ct-logo

150+ Correlational Research Topics: Best Ideas For Students

Welcome to our blog, Correlational Research Topics! Research about connections is important for understanding how changes in one thing can relate to changes in another. But it does not mean one thing causes the other. This blog will cover the basics of research on connections. 

This includes what connections mean and different types of connections. We’ll also discuss what impacts connections and why carefully picking research topics matters. Plus, we’ll give examples of connection research topics in different fields. We’ll show why they’re important and could make a difference.

Whether you’re a student looking for research ideas or want to know about connections in the real world, this blog aims to give helpful ideas and motivation for your journey into connection research. Let’s dive in to learn correlational research topics!

What is Correlational Research?

Table of Contents

Correlation research studies how changes in one thing relate to changes in another. It looks at how two things are connected and if they change together. For example, studying whether people’s income and their level of education are correlated. 

Correlation research does not prove cause and effect. It shows relationships between things but not why they are related. More studies are needed to determine if one thing causes the other. Correlation research helps reveal trends and patterns between variables.

How to Select Correlational Research Topics

Here are some simple tips for choosing a good topic for correlational research:

  • Pick two things you think are related, like age and memory or exercise and mood.
  • Ensure you can measure these things with numbers, like hours exercised per week or the number of words remembered.
  • Don’t try to prove one thing causes another; just look at how they are related.
  • Pick timely topics that matter right now.
  • Look at past research to get ideas and find gaps to fill.
  • Think about questions you have about how certain things are connected.
  • Look through research databases to find studies on relationships you’re curious about.
  • Choose things that naturally connect in the real world, not random things.

The main goal is to pick two things you can measure that somehow seem to relate to each other. Spend time thinking of ideas before settling on a topic.

150+ Correlational Research Topics For Students

Here are over 150 correlational research topics categorized into different fields for students:

  • The correlation between self-esteem and educational achievement among high school students.
  • Relationship between self-esteem and social media usage in college students.
  • Correlation between personality traits and career success.
  • Impact of parental attachment styles on romantic relationships in young adults.
  • Relationship between stress levels and sleep quality among university students.
  • Correlation between emotional intelligence and leadership effectiveness.
  • The connection between involvement of parents and academic performance in elementary school children.
  • Correlation between anxiety levels and academic performance in college students.
  • Relationship between attachment styles and childhood trauma in adulthood.
  • Correlation between mindfulness practices and stress reduction among college students.
 
  • The correlation between teacher-student rapport and student engagement in the classroom.
  • Relationship between homework completion rates and academic achievement.
  • Correlation between classroom environment and student motivation.
  • Impact of involvement of parents in education on student performance.
  • Relationship between school climate and student behavior.
  • Correlation between extracurricular activities and academic success.
  • The relationship between teacher feedback and pupil learning outcomes.
  • Correlation between technology usage and academic performance.
  • Relationship between school resources and student achievement.
  • Correlation between bullying experiences and academic performance.
  • The correlation between the status of socioeconomic and access to healthcare.
  • Relationship between family structure and juvenile delinquency rates.
  • Correlation between media representation and cultural perceptions.
  • Impact of community involvement on crime rates.
  • Relationship between religion and political affiliation.
  • Correlation between social support networks and mental health outcomes.
  • Relationship between gender roles and career choices.
  • Correlation between immigration rates and cultural assimilation.
  • Relationship between income inequality and social mobility.
  • Correlation between social media usage and social interaction patterns.
  • The correlation between growth of GDP and unemployment rates.
  • Relationship between inflation rates and consumer spending.
  • Correlation between government spending and economic growth.
  • Impact of trade policies on economic development.
  • Relationship between interest rates and investment behavior.
  • Correlation between income inequality and economic stability.
  • Relationship between education levels and income disparity.
  • Correlation between taxation policies and income distribution.
  • Impact of globalization on income inequality.
  • Relationship between poverty rates and access to healthcare.

Health and Medicine

  • The correlation between exercise frequency and mental health outcomes.
  • Relationship between diet quality and cardiovascular health.
  • Correlation between habits of smoking and lung cancer rates.
  • Impact of sleep duration on physical health.
  • Relationship between anxiety levels and immune system function.
  • Relationship between vaccination rates and disease prevalence.
  • Correlation between air pollution and respiratory diseases.
  • Impact of social support networks on recovery from illness.
  • Relationship between alcohol consumption and liver health.

Environmental Science

  • The correlation between deforestation and biodiversity loss.
  • Relationship between greenhouse gas emissions and world temperatures.
  • Correlation between water pollution levels and aquatic biodiversity.
  • Impact of urbanization on air quality.
  • Relationship between waste management practices and environmental sustainability.
  • Correlation between agricultural practices and soil erosion rates.
  • Relationship between renewable energy usage and carbon emissions.
  • Correlation between climate change and natural disasters.
  • Impact of plastic pollution on marine ecosystems.
  • Relationship between population growth and resource depletion.

Business and Management

  • The correlation between employee satisfaction and productivity.
  • Relationship between leadership styles and team performance.
  • Correlation between employee training programs and job satisfaction.
  • Impact of organizational culture on employee turnover rates.
  • Relationship between customer satisfaction and business profitability.
  • Correlation between marketing strategies and customer retention.
  • Relationship between the corporate social responsibility and brand reputation.
  • Correlation between employee diversity and innovation.
  • Impact of supply chain management practices on company performance.
  • Relationship between economic indicators and stock market fluctuations.

Technology and Society

  • The correlation between social media usage and loneliness feelings.
  • Relationship between screen time and attention span in children.
  • Correlation between video game usage and aggression levels.
  • Impact of smartphone usage on sleep quality.
  • Relationship between the online concerns of privacy and social media usage.
  • Correlation between digital literacy skills and academic performance.
  • Relationship between technology adoption rates and generational differences.
  • Correlation between Internet access and economic development.
  • Relationship between online shopping habits and environmental sustainability.
  • Correlation between technology usage and mental health outcomes.

Sports and Exercise Science

  • The correlation between physical activity levels and cardiovascular health.
  • Relationship between nutrition habits and athletic performance.
  • Correlation between training intensity and muscle growth.
  • Impact of sleep quality on athletic recovery.
  • Relationship between exercise frequency and mental well-being.
  • Correlation between sports participation and academic performance.
  • Relationship between injuries in sports and long-term health outcomes.
  • Correlation between coaching styles and athlete motivation.
  • Impact of sports specialization on injury risk.
  • Relationship between exercise adherence and weight management.

Media and Communication

  • The correlation between media consumption habits and political beliefs.
  • Relationship between advertising exposure and consumer behavior.
  • Correlation between news coverage and public opinion.
  • Influence of social media influencers on buying decisions.
  • The connection between critical thinking skills and media literacy.
  • Correlation between television viewing habits and body image issues.
  • Relationship between media representation and societal norms.
  • Correlation between online communication and interpersonal relationships.
  • Relationship between media exposure and aggression in children.
  • Correlation between streaming services usage and traditional media consumption.

Arts and Culture

  • The correlation between education in arts and academic achievement.
  • Relationship between cultural experiences and empathy levels.
  • Correlation between music preferences and personality traits.
  • Impact of cultural diversity on creative industries.
  • Relationship between art participation and mental health outcomes.
  • Correlation between museum attendance and community engagement.
  • Relationship between literature consumption and empathy development.
  • Correlation between cultural events attendance and social cohesion.
  • Impact of arts funding on community development.
  • Relationship between artistic expression and emotional well-being.

Political Science

  • The correlation between voter turnout and socioeconomic status.
  • Relationship between political ideology and environmental policies.
  • Correlation between campaign spending and election outcomes.
  • Impact of political polarization on civic engagement.
  • Relationship between media bias and public perception of political issues.
  • Correlation between government transparency and public trust.
  • Relationship between political party cooperation and attitudes towards immigration.
  • Correlation between political rhetoric and hate crime rates.
  • Relationship between political knowledge and participation in democratic processes.
  • Correlation between lobbying efforts and policy outcomes.

Law and Justice

  • The correlation between socioeconomic status and incarceration rates.
  • Relationship between sentencing disparities and racial identity.
  • Correlation between police presence and crime rates in urban areas.
  • Impact of therapeutic programs of justices on recidivism rates.
  • Relationship between access to legal representation and court outcomes.
  • Correlation between mandatory sentencing laws and prison overcrowding.
  • Relationship between drug policy enforcement and addiction rates.
  • Correlation between control laws on guns and firearm-related deaths.
  • Relationship between immigration policies and crime rates.
  • Correlation between juvenile justice interventions and rehabilitation outcomes.

History and Anthropology

  • The correlation between archaeological findings and historical narratives.
  • Relationship between language diversity and cultural preservation.
  • Correlation between migration patterns and cultural diffusion.
  • Impact of colonialism on indigenous cultures.
  • Relationship between cultural practices and social hierarchy.
  • Correlation between climate change and human migration.
  • Relationship between trade routes and cultural exchange.
  • Correlation between artistic expressions and societal values.
  • Relationship between religious beliefs and cultural traditions.
  • Correlation between technological advancements and societal change.

Gender Studies

  • The correlation between gender stereotypes and career choices.
  • Relationship between media representation and gender norms.
  • Correlation between gender wage gap and educational attainment.
  • Impact of gender individuality on mental health outcomes.
  • Relationship between gender roles and domestic responsibilities.
  • Correlation between workplace discrimination and gender diversity.
  • Relationship between feminism and political participation.
  • Correlation between LGBTQ+ rights advocacy and social acceptance.
  • Relationship between gender-based violence and cultural attitudes.
  • Correlation between gender equity policies and workplace satisfaction.

Miscellaneous

  • The correlation between pet ownership and mental health.
  • Relationship between travel experiences and cultural awareness.
  • Correlation between volunteering activities and life satisfaction.
  • Impact of hobbies on stress management.
  • Relationship between religious beliefs and charitable giving.
  • Correlation between language proficiency and cognitive abilities.
  • Relationship between parenting styles and child development results.
  • Correlation between financial literacy and money management skills.
  • Correlation between social network size and happiness levels.

These correlational research topics cover a wide range of areas and can inspire students looking to conduct correlational research in various fields.

Challenges and Limitations

Here are some simple challenges with correlational research:

  • It can’t prove one thing causes another, only that things are related.
  • Other factors could affect the relationship you see between the two things you’re studying.
  • Hard to know which thing impacts the other or if they impact each other.
  • Just because two things are correlated does not mean they have a strong relationship. The correlation could be weak.
  • Uses observational data, so there is less control than in experiments.
  • This might not apply to everyone, only the group studied.
  • People may not be honest or accurate if they self-report data like in surveys.

In summary, correlational research can only show two things that relate in some way but can’t prove causation or account for other factors that might affect the relationship. The results may only apply to the sample studied, too. These are good limitations to be aware of.

Best Practices for Correlational Research

Here are some best practices for conducting quality correlational research:

  • Use a large random sample representing the population you want to generalize to. This strengthens the external validity of your findings.
  • Measure variables accurately and reliably using validated instruments. Poor measurement can obscure relationships.
  • Collect data prospectively, if possible, rather than retrospectively. This avoids reliance on recollection.
  • Use multiple data points over time (longitudinal data) rather than a single data collection. This provides more insight into relationships.
  • Examine curvilinear relationships in addition to linear ones. The correlation may only occur at certain levels.
  • Control statistically for potential third variables that may influence the relationship. This provides a clearer assessment of the relationship.
  • Assess directionality and potential interactive or reciprocal relationships using path analysis or longitudinal data. This provides greater understanding.
  • Use multiple regression techniques to model more complex relationships among many variables.
  • Report effect sizes and confidence intervals, not just statistical significance. Effect size indicates practical importance.
  • Cautiously interpret results and do not overstate causality claims. Correlation does not equal causation.
  • Replicate findings using different samples to assess generalizability and consistency.

Following best practices strengthens correlational research’s rigor, analysis, and interpretation. Adhering to these can produce higher-quality studies.

Final Remarks

Studying correlational research topics can help us learn much about how different things are related. Psychology, education, and business students can pick topics to research and find interesting connections. They can learn if certain things appear to go up or down together. This can give useful information to help make decisions or create policies.

When students carefully choose a correlational research topic and study the data, they can add to what we know about real-world relationships. For example, they may find links between sleep and grades, exercise and mood, or class size and learning.

Doing correlational research allows students to spot patterns between things and practice research skills. As they choose their topics, students can find exciting areas to explore. Uncovering correlations teaches us more about the complicated links between things in the world around us. With simple hard work, students can use correlational research to reveal new insights.

Similar Articles

100 Research Topics In Commerce Field

Top 100 Research Topics In Commerce Field

The world of commerce is rapidly evolving. With new technologies, globalization, and changing consumer behaviors, many exciting research topics exist…

Mini Project Ideas For Computer Engineering Students

Top 30+ Mini Project Ideas For Computer Engineering Students

Mini projects are really important for computer engineering students. They help students learn by doing practical stuff alongside their regular…

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Logo for Portland State University Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Correlational Research

Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton

Learning Objectives

  • Define correlational research and give several examples.
  • Explain why a researcher might choose to conduct correlational research rather than experimental research or another type of non-experimental research.
  • Interpret the strength and direction of different correlation coefficients.
  • Explain why correlation does not imply causation.

What Is Correlational Research?

Correlational research is a type of non-experimental research in which the researcher measures two variables (binary or continuous) and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are many reasons that researchers interested in statistical relationships between variables would choose to conduct a correlational study rather than an experiment. The first is that they do not believe that the statistical relationship is a causal one or are not interested in causal relationships. Recall two goals of science are to describe and to predict and the correlational research strategy allows researchers to achieve both of these goals. Specifically, this strategy can be used to describe the strength and direction of the relationship between two variables and if there is a relationship between the variables then the researchers can use scores on one variable to predict scores on the other (using a statistical technique called regression, which is discussed further in the section on Complex Correlation in this chapter).

Another reason that researchers would choose to use a correlational study rather than an experiment is that the statistical relationship of interest is thought to be causal, but the researcher  cannot manipulate the independent variable because it is impossible, impractical, or unethical. For example, while a researcher might be interested in the relationship between the frequency people use cannabis and their memory abilities they cannot ethically manipulate the frequency that people use cannabis. As such, they must rely on the correlational research strategy; they must simply measure the frequency that people use cannabis and measure their memory abilities using a standardized test of memory and then determine whether the frequency people use cannabis is statistically related to memory test performance. 

Correlation is also used to establish the reliability and validity of measurements. For example, a researcher might evaluate the validity of a brief extraversion test by administering it to a large group of participants along with a longer extraversion test that has already been shown to be valid. This researcher might then check to see whether participants’ scores on the brief test are strongly correlated with their scores on the longer one. Neither test score is thought to cause the other, so there is no independent variable to manipulate. In fact, the terms  independent variable  and dependent variabl e  do not apply to this kind of research.

Another strength of correlational research is that it is often higher in external validity than experimental research. Recall there is typically a trade-off between internal validity and external validity. As greater controls are added to experiments, internal validity is increased but often at the expense of external validity as artificial conditions are introduced that do not exist in reality. In contrast, correlational studies typically have low internal validity because nothing is manipulated or controlled but they often have high external validity. Since nothing is manipulated or controlled by the experimenter the results are more likely to reflect relationships that exist in the real world.

Finally, extending upon this trade-off between internal and external validity, correlational research can help to provide converging evidence for a theory. If a theory is supported by a true experiment that is high in internal validity as well as by a correlational study that is high in external validity then the researchers can have more confidence in the validity of their theory. As a concrete example, correlational studies establishing that there is a relationship between watching violent television and aggressive behavior have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001) [1] .

Does Correlational Research Always Involve Quantitative Variables?

A common misconception among beginning researchers is that correlational research must involve two quantitative variables, such as scores on two extraversion tests or the number of daily hassles and number of symptoms people have experienced. However, the defining feature of correlational research is that the two variables are measured—neither one is manipulated—and this is true regardless of whether the variables are quantitative or categorical. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a correlational study because the researcher did not manipulate the students’ nationalities. The same is true of the study by Cacioppo and Petty comparing college faculty and factory workers in terms of their need for cognition. It is a correlational study because the researchers did not manipulate the participants’ occupations.

Figure 6.2 shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a correlational study because it is unclear whether the independent variable was manipulated. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then it is an experiment. If the researcher simply asked participants whether they made daily to-do lists, then it is a correlational study. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a correlational study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead (the directionality problem). Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed (the third-variable problem). The crucial point is that what defines a study as experimental or correlational is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. What defines a study is how the study is conducted.

correlational research title examples quantitative

Data Collection in Correlational Research

Again, the defining feature of correlational research is that neither variable is manipulated. It does not matter how or where the variables are measured. A researcher could have participants come to a laboratory to complete a computerized backward digit span task and a computerized risky decision-making task and then assess the relationship between participants’ scores on the two tasks. Or a researcher could go to a shopping mall to ask people about their attitudes toward the environment and their shopping habits and then assess the relationship between these two variables. Both of these studies would be correlational because no independent variable is manipulated. 

Correlations Between Quantitative Variables

Correlations between quantitative variables are often presented using scatterplots . Figure 6.3 shows some hypothetical data on the relationship between the amount of stress people are under and the number of physical symptoms they have. Each point in the scatterplot represents one person’s score on both variables. For example, the circled point in Figure 6.3 represents a person whose stress score was 10 and who had three physical symptoms. Taking all the points into account, one can see that people under more stress tend to have more physical symptoms. This is a good example of a positive relationship , in which higher scores on one variable tend to be associated with higher scores on the other. In other words, they move in the same direction, either both up or both down. A negative relationship is one in which higher scores on one variable tend to be associated with lower scores on the other. In other words, they move in opposite directions. There is a negative relationship between stress and immune system functioning, for example, because higher stress is associated with lower immune system functioning.

Figure 6.3 Scatterplot Showing a Hypothetical Positive Relationship Between Stress and Number of Physical Symptoms

The strength of a correlation between quantitative variables is typically measured using a statistic called  Pearson’s Correlation Coefficient (or Pearson's  r ) . As Figure 6.4 shows, Pearson’s r ranges from −1.00 (the strongest possible negative relationship) to +1.00 (the strongest possible positive relationship). A value of 0 means there is no relationship between the two variables. When Pearson’s  r  is 0, the points on a scatterplot form a shapeless “cloud.” As its value moves toward −1.00 or +1.00, the points come closer and closer to falling on a single straight line. Correlation coefficients near ±.10 are considered small, values near ± .30 are considered medium, and values near ±.50 are considered large. Notice that the sign of Pearson’s  r  is unrelated to its strength. Pearson’s  r  values of +.30 and −.30, for example, are equally strong; it is just that one represents a moderate positive relationship and the other a moderate negative relationship. With the exception of reliability coefficients, most correlations that we find in Psychology are small or moderate in size. The website http://rpsychologist.com/d3/correlation/ , created by Kristoffer Magnusson, provides an excellent interactive visualization of correlations that permits you to adjust the strength and direction of a correlation while witnessing the corresponding changes to the scatterplot.

Figure 6.4 Range of Pearson’s r, From −1.00 (Strongest Possible Negative Relationship), Through 0 (No Relationship), to +1.00 (Strongest Possible Positive Relationship)

There are two common situations in which the value of Pearson’s  r  can be misleading. Pearson’s  r  is a good measure only for linear relationships, in which the points are best approximated by a straight line. It is not a good measure for nonlinear relationships, in which the points are better approximated by a curved line. Figure 6.5, for example, shows a hypothetical relationship between the amount of sleep people get per night and their level of depression. In this example, the line that best approximates the points is a curve—a kind of upside-down “U”—because people who get about eight hours of sleep tend to be the least depressed. Those who get too little sleep and those who get too much sleep tend to be more depressed. Even though Figure 6.5 shows a fairly strong relationship between depression and sleep, Pearson’s  r  would be close to zero because the points in the scatterplot are not well fit by a single straight line. This means that it is important to make a scatterplot and confirm that a relationship is approximately linear before using Pearson’s  r . Nonlinear relationships are fairly common in psychology, but measuring their strength is beyond the scope of this book.

Figure 6.5 Hypothetical Nonlinear Relationship Between Sleep and Depression

The other common situations in which the value of Pearson’s  r  can be misleading is when one or both of the variables have a limited range in the sample relative to the population. This problem is referred to as  restriction of range . Assume, for example, that there is a strong negative correlation between people’s age and their enjoyment of hip hop music as shown by the scatterplot in Figure 6.6. Pearson’s  r  here is −.77. However, if we were to collect data only from 18- to 24-year-olds—represented by the shaded area of Figure 6.6—then the relationship would seem to be quite weak. In fact, Pearson’s  r  for this restricted range of ages is 0. It is a good idea, therefore, to design studies to avoid restriction of range. For example, if age is one of your primary variables, then you can plan to collect data from people of a wide range of ages. Because restriction of range is not always anticipated or easily avoidable, however, it is good practice to examine your data for possible restriction of range and to interpret Pearson’s  r  in light of it. (There are also statistical methods to correct Pearson’s  r  for restriction of range, but they are beyond the scope of this book).

Figure 6.6 Hypothetical Data Showing How a Strong Overall Correlation Can Appear to Be Weak When One Variable Has a Restricted Range

Correlation Does Not Imply Causation

You have probably heard repeatedly that “Correlation does not imply causation.” An amusing example of this comes from a 2012 study that showed a positive correlation (Pearson’s r = 0.79) between the per capita chocolate consumption of a nation and the number of Nobel prizes awarded to citizens of that nation [2] . It seems clear, however, that this does not mean that eating chocolate causes people to win Nobel prizes, and it would not make sense to try to increase the number of Nobel prizes won by recommending that parents feed their children more chocolate.

There are two reasons that correlation does not imply causation. The first is called the  directionality problem . Two variables,  X  and  Y , can be statistically related because X  causes  Y  or because  Y  causes  X . Consider, for example, a study showing that whether or not people exercise is statistically related to how happy they are—such that people who exercise are happier on average than people who do not. This statistical relationship is consistent with the idea that exercising causes happiness, but it is also consistent with the idea that happiness causes exercise. Perhaps being happy gives people more energy or leads them to seek opportunities to socialize with others by going to the gym. The second reason that correlation does not imply causation is called the  third-variable problem . Two variables,  X  and  Y , can be statistically related not because  X  causes  Y , or because  Y  causes  X , but because some third variable,  Z , causes both  X  and  Y . For example, the fact that nations that have won more Nobel prizes tend to have higher chocolate consumption probably reflects geography in that European countries tend to have higher rates of per capita chocolate consumption and invest more in education and technology (once again, per capita) than many other countries in the world. Similarly, the statistical relationship between exercise and happiness could mean that some third variable, such as physical health, causes both of the others. Being physically healthy could cause people to exercise and cause them to be happier. Correlations that are a result of a third-variable are often referred to as  spurious correlations .

Some excellent and amusing examples of spurious correlations can be found at http://www.tylervigen.com  (Figure 6.7  provides one such example).

correlational research title examples quantitative

“Lots of Candy Could Lead to Violence”

Although researchers in psychology know that correlation does not imply causation, many journalists do not. One website about correlation and causation, http://jonathan.mueller.faculty.noctrl.edu/100/correlation_or_causation.htm , links to dozens of media reports about real biomedical and psychological research. Many of the headlines suggest that a causal relationship has been demonstrated when a careful reading of the articles shows that it has not because of the directionality and third-variable problems.

One such article is about a study showing that children who ate candy every day were more likely than other children to be arrested for a violent offense later in life. But could candy really “lead to” violence, as the headline suggests? What alternative explanations can you think of for this statistical relationship? How could the headline be rewritten so that it is not misleading?

As you have learned by reading this book, there are various ways that researchers address the directionality and third-variable problems. The most effective is to conduct an experiment. For example, instead of simply measuring how much people exercise, a researcher could bring people into a laboratory and randomly assign half of them to run on a treadmill for 15 minutes and the rest to sit on a couch for 15 minutes. Although this seems like a minor change to the research design, it is extremely important. Now if the exercisers end up in more positive moods than those who did not exercise, it cannot be because their moods affected how much they exercised (because it was the researcher who used random assignment to determine how much they exercised). Likewise, it cannot be because some third variable (e.g., physical health) affected both how much they exercised and what mood they were in. Thus experiments eliminate the directionality and third-variable problems and allow researchers to draw firm conclusions about causal relationships.

Media Attributions

  • Nicholas Cage and Pool Drownings  © Tyler Viegen is licensed under a  CC BY (Attribution)  license
  • Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage. ↵
  • Messerli, F. H. (2012). Chocolate consumption, cognitive function, and Nobel laureates. New England Journal of Medicine, 367 , 1562-1564. ↵

A graph that presents correlations between two quantitative variables, one on the x-axis and one on the y-axis. Scores are plotted at the intersection of the values on each axis.

A relationship in which higher scores on one variable tend to be associated with higher scores on the other.

A relationship in which higher scores on one variable tend to be associated with lower scores on the other.

A statistic that measures the strength of a correlation between quantitative variables.

When one or both variables have a limited range in the sample relative to the population, making the value of the correlation coefficient misleading.

The problem where two variables, X  and  Y , are statistically related either because X  causes  Y, or because  Y  causes  X , and thus the causal direction of the effect cannot be known.

Two variables, X and Y, can be statistically related not because X causes Y, or because Y causes X, but because some third variable, Z, causes both X and Y.

Correlations that are a result not of the two variables being measured, but rather because of a third, unmeasured, variable that affects both of the measured variables.

Correlational Research Copyright © by Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Illustration

  • Basics of Research Process
  • Methodology

Correlational Study: Design, Methods and Examples

  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Research Paper Topics
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Research Paper Guides
  • Formatting Guides
  • Admission Guides
  • Dissertation & Thesis Guides

Correlational Research

Table of contents

Illustration

Use our free Readability checker

Correlational research is a type of research design used to examine the relationship between two or more variables. In correlational research, researchers measure the extent to which two or more variables are related, without manipulating or controlling any of the variables.

Whether you are a beginner or an experienced researcher, chances are you’ve heard something about correlational research. It’s time that you learn more about this type of study more in-depth, since you will be using it a lot.

  • What is correlation?
  • When to use it?
  • How is it different from experimental studies?
  • What data collection method will work?

Grab your pen and get ready to jot down some notes as our paper writing service is going to cover all questions you may have about this type of study. Let’s get down to business! 

What Is Correlational Research: Definition

A correlational research is a preliminary type of study used to explore the connection between two variables. In this type of research, you won’t interfere with the variables. Instead of manipulating or adjusting them, researchers focus more on observation.  Correlational study is a perfect option if you want to figure out if there is any link between variables. You will conduct it in 2 cases:

  • When you want to test a theory about non-causal connection. For example, you may want to know whether drinking hot water boosts the immune system. In this case, you expect that vitamins, healthy lifestyle and regular exercise are those factors that have a real positive impact. However, this doesn’t mean that drinking hot water isn’t associated with the immune system. So measuring this relationship will be really useful.
  • When you want to investigate a causal link. You want to study whether using aerosol products leads to ozone depletion. You don’t have enough expenses for conducting complex research. Besides, you can’t control how often people use aerosols. In this case, you will opt for a correlational study.

Correlational Study: Purpose

Correlational research is most useful for purposes of observation and prediction. Researcher's goal is to observe and measure variables to determine if any relationship exists. In case there is some association, researchers assess how strong it is. As an initial type of research, this method allows you to test and write the hypotheses. Correlational study doesn’t require much time and is rather cheap.

Correlational Research Design

Correlational research designs are often used in psychology, epidemiology , medicine and nursing. They show the strength of correlation that exists between the variables within a population. For this reason, these studies are also known as ecological studies.  Correlational research design methods are characterized by such traits:

  • Non-experimental method. No manipulation or exposure to extra conditions takes place. Researchers only examine how variables act in their natural environment without any interference.
  • Fluctuating patterns. Association is never the same and can change due to various factors.
  • Quantitative research. These studies require quantitative research methods . Researchers mostly run a statistical analysis and work with numbers to get results.
  • Association-oriented study. Correlational study is aimed at finding an association between 2 or more phenomena or events. This has nothing to do with causal relationships between dependent and independent variables .

Correlational Research Questions

Correlational research questions usually focus on how one variable related to another one. If there is some connection, you will observe how strong it is. Let’s look at several examples.

 

Is there any relationship between the regular use of social media and eating habits?

There is a positive relationship between the frequent use of social media and excessive eating.

There is no relationship between the time spent on social media and eating habits.

What effect does social distancing have on depression?

There is a strong association between the time people are isolated and the level of depression.

There is no association between isolation and depression.

Correlational Research Types

Depending on the direction and strength of association, there are 3 types of correlational research:

  • Positive correlation If one variable increases, the other one will grow accordingly. If there is any reduction, both variables will decrease.
  • Negative correlation All changes happen in the reverse direction. If one variable increases, the other one should decrease and vice versa.
  • Zero correlation No association between 2 factors or events can be found.

Correlational Research: Data Collection Methods

There are 3 main methods applied to collect data in correlational research:

  • Surveys and polls
  • Naturalistic observation
  • Secondary or archival data.

It’s essential that you select the right study method. Otherwise, it won’t be possible to achieve accurate results and answer the research question correctly. Let’s have a closer look at each of these methods to make sure that you make the right choice.

Surveys in Correlational Study

Survey is an easy way to collect data about a population in a correlational study. Depending on the nature of the question, you can choose different survey variations. Questionnaires, polls and interviews are the three most popular formats used in a survey research study. To conduct an effective study, you should first identify the population and choose whether you want to run a survey online, via email or in person.

Naturalistic Observation: Correlational Research

Naturalistic observation is another data collection approach in correlational research methodology. This method allows us to observe behavioral patterns in a natural setting. Scientists often document, describe or categorize data to get a clear picture about a group of people. During naturalistic observations, you may work with both qualitative and quantitative research information. Nevertheless, to measure the strength of association, you should analyze numeric data. Members of a population shouldn’t know that they are being studied. Thus, you should blend in a target group as naturally as possible. Otherwise, participants may behave in a different way which may cause a statistical error. 

Correlational Study: Archival Data

Sometimes, you may access ready-made data that suits your study. Archival data is a quick correlational research method that allows to obtain necessary details from the similar studies that have already been conducted. You won’t deal with data collection techniques , since most of numbers will be served on a silver platter. All you will be left to do is analyze them and draw a conclusion. Unfortunately, not all records are accurate, so you should rely only on credible sources.

Pros and Cons of Correlational Research

Choosing what study to run can be difficult. But in this article, we are going to take an in-depth look at advantages and disadvantages of correlational research. This should help you decide whether this type of study is the best fit for you. Without any ado, let’s dive deep right in.

Advantages of Correlational Research

Obviously, one of the many advantages of correlational research is that it can be conducted when an experiment can’t be the case. Sometimes, it may be unethical to run an experimental study or you may have limited resources. This is exactly when ecological study can come in handy.  This type of study also has several benefits that have an irreplaceable value:

  • Works well as a preliminary study
  • Allows examining complex connection between multiple variables
  • Helps you study natural behavior
  • Can be generalized to other settings.

If you decide to run an archival study or conduct a survey, you will be able to save much time and expenses.

Disadvantages of Correlational Research

There are several limitations of correlational research you should keep in mind while deciding on the main methodology. Here are the advantages one should consider:

  • No causal relationships can be identified
  • No chance to manipulate extraneous variables
  • Biased results caused by unnatural behavior
  • Naturalistic studies require quite a lot of time.

As you can see, these types of studies aren’t end-all, be-all. They may indicate a direction for further research. Still, correlational studies don’t show a cause-and-effect relationship which is probably the biggest disadvantage. 

Difference Between Correlational and Experimental Research

Now that you’ve come this far, let’s discuss correlational vs experimental research design . Both studies involve quantitative data. But the main difference lies in the aim of research. Correlational studies are used to identify an association which is measured with a coefficient, while an experiment is aimed at determining a causal relationship.  Due to a different purpose, the studies also have different approaches to control over variables. In the first case, scientists can’t control or otherwise manipulate the variables in question. Meanwhile, experiments allow you to control variables without limit. There is a  causation vs correlation  blog on our website. Find out their differences as it will be useful for your research.

Example of Correlational Research

Above, we have offered several correlational research examples. Let’s have a closer look at how things work using a more detailed example.

Example You want to determine if there is any connection between the time employees work in one company and their performance. An experiment will be rather time-consuming. For this reason, you can offer a questionnaire to collect data and assess an association. After running a survey, you will be able to confirm or disprove your hypothesis.

Correlational Study: Final Thoughts

That’s pretty much everything you should know about correlational study. The key takeaway is that this type of study is used to measure the connection between 2 or more variables. It’s a good choice if you have no chance to run an experiment. However, in this case you won’t be able to control for extraneous variables . So you should consider your options carefully before conducting your own research. 

Illustration

We’ve got your back! Entrust your assignment to our skilled paper writers and they will complete a custom research paper with top quality in mind!

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

thumbnail@2x.png

Frequently Asked Questions About Correlational Study

1. what is a correlation.

Correlation is a connection that shows to which extent two or more variables are associated. It doesn’t show a causal link and only helps to identify a direction (positive, negative or zero) or the strength of association.

2. How many variables are in a correlation?

There can be many different variables in a correlation which makes this type of study very useful for exploring complex relationships. However, most scientists use this research to measure the association between only 2 variables.

3. What is a correlation coefficient?

Correlation coefficient (ρ) is a statistical measure that indicates the extent to which two variables are related. Association can be strong, moderate or weak. There are different types of p coefficients: positive, negative and zero.

4. What is a correlational study?

Correlational study is a type of statistical research that involves examining two variables in order to determine association between them. It’s a non-experimental type of study, meaning that researchers can’t change independent variables or control extraneous variables.

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Correlational Research

Learning objectives.

  • Explain correlational research, including what a correlation coefficient tells us about the relationship between variables

One of the primary methods used to study abnormal behavior is the correlational method.  Correlation means that there is a relationship between two or more variables (such between the variables of negative thinking and depressive symptoms), but this relationship does not necessarily imply cause and effect. When two variables are correlated, it simply means that as one variable changes, so does the other. We can measure correlation by calculating a statistic known as a correlation coefficient. A correlation coefficient is a number from negative one to positive one that indicates the strength and direction of the relationship between variables. The association between two variables can be summarized statistically using the correlation coefficient (abbreviated as  r ).

The number portion of the correlation coefficient indicates the strength of the relationship. The closer the number is to one (be it negative or positive), the more strongly related the variables are, and the more predictable changes in one variable will be as the other variable changes. The closer the number is to zero, the weaker the relationship, and the less predictable the relationships between the variables becomes. For instance, a correlation coefficient of 0.9 indicates a far stronger relationship than a correlation coefficient of 0.3. If the variables are not related to one another at all, the correlation coefficient is zero. The example above about negative thinking and depressive symptoms is an example of two variables that we might expect to have a relationship to each other.  When higher values in one variable (negative thinking) are associated with higher values in the other variable (depressive symptoms), there is a  positive correlation  between the variables.

The sign—positive or negative—of the correlation coefficient indicates the direction of the relationship.  Positive correlations carry positive signs; negative correlations carry negative signs.  A positive correlation means that the variables move in the same direction. Put another way, it means that as one variable increases so does the other, and conversely, when one variable decreases so does the other. A negative correlation means that the variables move in opposite directions. If two variables are negatively correlated, a decrease in one variable is associated with an increase in the other and vice versa.

Other examples of positive correlations are the relationship between depression and disturbance in normal sleep patterns. One might expect then that scores on a measure of depression would be positively correlated with scores on a measure of sleep disturbances.

One might expect a negative correlation to exist between  between depression and self-esteem.  The more depressed people are, the lower their scores are on the Rosenberg self-esteem scale (RSES), a self-esteem measure widely used in social-science research.  Keep in mind that a negative correlation is not the same as no correlation. For example, we would probably find no correlation between  depression  and someone’s   height. 

In correlational research,  scientists passively observe and measure phenomena.    Here, we do not intervene and change behavior, as we do in experiments. In correlational research, we identify patterns of relationships, but we usually cannot infer what causes what. Importantly, with correlational research, you can examine only two variables at a time, no more and no less.

As mentioned earlier, correlations have predictive value. So, what if you wanted to test whether spending on others is related to happiness, but you don’t have $20 to give to each participant? You could use a correlational design—which is exactly what Professor Dunn did, too. She asked people how much of their income they spent on others or donated to charity, and later she asked them how happy they were. Do you think these two variables were related? Yes, they were! The more money people reported spending on others, the happier they were.

More Details about the Correlation

To find out how well two variables correspond, we can plot the relationship between the two scores on what is known as a scatterplot (Figure 1). In the scatterplot, each dot represents a data point. (In this case it’s individuals, but it could be some other unit.) Importantly, each dot provides us with two pieces of information—in this case, information about how good the person rated the past month ( x -axis) and how happy the person felt in the past month ( y -axis). Which variable is plotted on which axis does not matter.

Scatterplot of the association between happiness and ratings of the past month, a positive correlation (r = .81)

For the example above, the direction of the association is positive. This means that people who perceived the past month as being good reported feeling more happy, whereas people who perceived the month as being bad reported feeling less happy.

In a scatterplot, the dots form a pattern that extends from the bottom left to the upper right (just as they do in Figure 1). The  r  value for a positive correlation is indicated by a positive number (although, the positive sign is usually omitted). Here, the  r  value is 0.81.

Figure 2 shows a  negative correlation,   the association between the average height of males in a country ( y -axis) and the pathogen prevalence, or commonness of disease, of that country ( x -axis). In this scatterplot, each dot represents a country. Notice how the dots extend from the top left to the bottom right. What does this mean in real-world terms? It means that people are shorter in parts of the world where there is more disease. The  r  value for a negative correlation is indicated by a negative number—that is, it has a minus (−) sign in front of it. Here, it is −0.83.

Scatterplot showing the association between average male height and pathogen prevalence, a negative correlation (r = –.83).

The strength of a correlation has to do with how well the two variables align. Recall that in Professor Dunn’s correlational study, spending on others positively correlated with happiness: the more money people reported spending on others, the happier they reported to be. At this point, you may be thinking to yourself, “I know a very generous person who gave away lots of money to other people but is miserable!” Or maybe you know of a very stingy person who is happy as can be. Yes, there might be exceptions. If an association has many exceptions, it is considered a weak correlation. If an association has few or no exceptions, it is considered a strong correlation. A strong correlation is one in which the two variables always, or almost always, go together. In the example of happiness and how good the month has been, the association is strong. The stronger a correlation is, the tighter the dots in the scatterplot will be arranged along a sloped line. [1]

Problems with correlation

If generosity and happiness are positively correlated, should we conclude that being generous causes happiness? Similarly, if height and pathogen prevalence are negatively correlated, should we conclude that disease causes shortness? From a correlation alone, we can’t be certain. For example, in the first case it may be that happiness causes generosity, or that generosity causes happiness. Or, a third variable might cause both happiness  and  generosity, creating the illusion of a direct link between the two. For example, wealth could be the third variable that causes both greater happiness and greater generosity. This is why correlation does not mean causation—an often repeated phrase among psychologists. [2]

Correlation Does Not Indicate Causation

Correlational research is useful because it allows us to discover the strength and direction of relationships that exist between two variables. However, correlation is limited because establishing the existence of a relationship tells us little about cause and effect . While variables are sometimes correlated because one does cause the other, it could also be that some other factor, a confounding variable , is actually causing the systematic movement in our variables of interest. In the  depression and negative thinking   example mentioned earlier, stress  is a confounding variable that could account for the relationship between the two variables.   

Even when we cannot point to clear confounding variables, we should not assume that a correlation between two variables implies that one variable causes changes in another. This can be frustrating when a cause-and-effect relationship seems clear and intuitive. Think back to our example about the relationship between depression and disturbance in normal sleep patterns.  It seems reasonable to assume that s leep disturbance might cause a higher score on a measure of depression, just as a high degree of depression might cause more disturbed sleep patterns , but if we were limited to  correlational research , we would be overstepping our bounds by making this assumption.  Both depression and sleep disturbance could be due to an underlying physiological disorder o r any to other third variable that you have not measured .

Unfortunately, people mistakenly make claims of causation as a function of correlations all the time.   While correlational research is invaluable in identifying relationships among variables, a major limitation is the inability to establish causality.  The correlational method does not involve manipulation of the variables of interest. In the previous example, the experimenter does not manipulate people’s depressive symptoms or sleep patterns.  Psychologists want to make statements about cause and effect, but the only way to do that is to conduct an experiment to answer a research question. The next section describes how  investigators use experimental methods in which the experimenter manipulates one or more variables of interest and observes their effects on other variables or outcomes under controlled conditions.

In this video, we discuss one of the best methods psychologists have for predicting behaviors: correlation. But does that mean that a behavior is absolutely going to happen? Let’s find out!

You can view the transcript for “#5 Correlation vs. Causation – Psy 101” here (opens in new window) .

Think It Over

Consider why correlational research is often used in the study of abnormal behavior. If correlational designs do not demonstrate causation, why do researchers make causal claims regarding their results? Are there instances when correlational results could demonstrate causation?

cause-and-effect relationship:  changes in one variable cause the changes in the other variable; can be determined only through an experimental research design

confirmation bias:  tendency to ignore evidence that disproves ideas or beliefs

confounding variable:  unanticipated outside factor that affects both variables of interest,\; often gives the false impression that changes in one variable causes changes in the other variable, when, in actuality, the outside factor causes changes in both variables

correlation: the relationship between two or more variables; when two variables are correlated, one variable changes as the other does

correlation coefficient:  number from -1 to +1, indicating the strength and direction of the relationship between variables, and usually represented by r

negative correlation:  two variables change in different directions, with one becoming larger as the other becomes smaller; a negative correlation is not the same thing as no correlation

positive correlation:  two variables change in the same direction, both becoming either larger or smaller

CC Licensed Content, Shared Previously

  • Correlational Research . Authored by : Sonja Ann Miller for Lumen Learning.  Provided by : Lumen Learning.  License :  CC BY: Attribution
  • Analyzing Findings.  Authored by : OpenStax College.  Located at :  http://cnx.org/contents/[email protected]:mfArybye@7/Analyzing-Findings .  License :  CC BY: Attribution .  License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Research Designs.  Authored by : Christie Napa Scollon .  Provided by : Singapore Management University.  Located at :  https://nobaproject.com/modules/research-designs .  Project : The Noba Project.  License :  CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

All Rights Reserved Content

  • Correlation vs. Causality: Freakonomics Movie.  Located at :  https://www.youtube.com/watch?v=lbODqslc4Tg .  License :  Other .  License Terms : Standard YouTube License
  • Scollon, C. N. (2020). Research designs. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series: Psychology. Champaign, IL: DEF publishers. Retrieved from http://noba.to/acxb2thy ↵

Correlational Research Copyright © by Meredith Palm is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

IMAGES

  1. Correlational Research Examples In Psychology

    correlational research title examples quantitative

  2. Chapter 9 Correlational Research Designs

    correlational research title examples quantitative

  3. What Is a Correlational Study And Examples of correlational research

    correlational research title examples quantitative

  4. Correlational Research

    correlational research title examples quantitative

  5. PPT

    correlational research title examples quantitative

  6. (PDF) Quantitative Correlational Research Study of Leadership

    correlational research title examples quantitative

VIDEO

  1. Unit 1: Correlational Research (AP Psychology)

  2. Correlation || Types of correlation || Coefficient of correlation statistics

  3. Experimental- Descriptive- Correlational research l Types of Research

  4. Lesson 4 : Correlational Research

  5. Correlational Research Titles (Quantitative Research)

  6. Unit 0 Part 6 Correlational Research Design

COMMENTS

  1. 130+ Correlational Research Topics: That You Need To Know

    Find over 130 ideas for correlational research topics in various fields, such as education, nursing, technology, economics, psychology, and more. Learn how to write a catchy title for your research paper and get examples of correlation research questions.

  2. 120+ Great Correlational Research Topics For Students [2024]

    Best Correlational Research Sample Title Examples for Statistics Essays. Rent costs and population correlation. COVID-19 vaccination and health budget connection. Technology and data sample collection correlation. Education costs and income connection. Education levels and job satisfaction correlation.

  3. Correlational Research

    Learn what correlational research is, when and how to use it, and how to collect and analyze data. Find out the differences and similarities between correlational and experimental research, and the limitations of correlation and causation.

  4. Correlational Research

    Learn how to use correlational research to investigate relationships between variables without manipulating them. Find out when, how, and why to use this method, and see examples of different data collection and analysis techniques.

  5. Correlational Research

    Correlational research is a non-experimental design that examines the statistical relationship between two or more variables without manipulating them. It can be conducted using different methods, such as surveys, observational studies, archival data, experimental design, meta-analysis, and data analysis methods.

  6. Correlational Study Overview & Examples

    A correlational study is an experimental design that evaluates only the correlation between variables. It does not control or manipulate the variables and cannot prove causality. See types, examples, and analysis methods of correlational research.

  7. What is Correlational Research? (+ Design, Examples)

    Correlational research is a method to examine the relationship between variables without manipulating them. Unlike experimental research, it cannot establish causality, but it can provide insights for exploratory analysis, predictive modeling, and theory development.

  8. Correlational Research: What it is with Examples

    Correlational research is a non-experimental method that measures and assesses the relationship between two variables without manipulating them. Learn about positive, negative, and no correlation, and how to collect data through naturalistic observation and archival data.

  9. Correlational Research Designs: Types, Examples & Methods

    Learn what correlational research is, how to identify different types of correlations, and how to collect data using naturalistic observation, archival, and survey methods. See examples of correlational research in various fields and the advantages and disadvantages of each method.

  10. 7.2 Correlational Research

    Correlational research is a type of nonexperimental research that measures two variables and assesses their statistical relationship without manipulating them. Learn why researchers choose correlational research, how to collect data using naturalistic observation and archival data, and the advantages and limitations of this approach.

  11. 150+ Correlational Research Topics For Students [2024]

    Find over 150 ideas for correlational research topics across various disciplines, such as education, health, social sciences, and more. Learn what correlation is, how it works, and why it matters for students.

  12. Correlational Research

    Correlational research design is a method of studying the association between two or more variables without manipulating them. Learn about the types of correlations, when to use them, and how to conduct them with examples and steps.

  13. 500+ Quantitative Research Titles and Topics

    Find quantitative research topics for various fields, such as business, education, medicine, social sciences, and engineering. Browse examples of quantitative research titles and topics with statistical analysis, correlation, and regression.

  14. 150+ Correlational Research Topics: Best Ideas For Students

    Learn what correlational research is and how to choose a good topic for it. Explore over 150 examples of correlational research topics in psychology, education, sociology, economics, health, environment, business, technology and sports.

  15. quantitative correlational study: Topics by Science.gov

    2010-01-01. The purpose of this quantitative correlational study was to identify the relationship between the type of teacher preparation program and student performance on the seventh and eighth grade mathematics state assessments in rural school settings. The study included a survey of a convenience sample of 36 teachers from Colorado and ...

  16. Correlational Research

    Learn what correlational research is, why researchers use it, and how to interpret correlation coefficients. Find out the difference between quantitative and categorical variables, and the problems of causality and directionality in correlational studies.

  17. Introduction to Correlation Research

    Correlation research is used to measure the relationship between two or more variables among a single group of people. It does not prove causality, but it can show the direction, strength, and form of the correlation. See examples, questions, and formulas for correlation research.

  18. Correlational Research and Its Sample Research Titles

    Correlational Research is a type of research that investigates the relationship between variables without controlling or manipulating any of them. The direct...

  19. UMass Global ScholarWorks

    UMass Global ScholarWorks | UMass Global Research

  20. Correlational Research: Design, Methods and Examples

    Correlational Research: Design, Methods and Examples

  21. 6.2 Correlational Research

    Correlational research is a type of non-experimental research that measures two variables and assesses their statistical relationship without controlling extraneous variables. The web page explains the reasons, methods, and examples of correlational research, but does not address the query about causality.

  22. Correlational Research

    Correlational Research. One of the primary methods used to study abnormal behavior is the correlational method. Correlation means that there is a relationship between two or more variables (such between the variables of negative thinking and depressive symptoms), but this relationship does not necessarily imply cause and effect. When two variables are correlated, it simply means that as one ...

  23. (PDF) Quantitative Correlational Research Study of Leadership

    The purpose of the quantitative. correlational study is to profile the leadership of women engineers practicing in the province of. British Columbia in terms of leadership practices and to examine ...

  24. (PDF) A Correlational Study: Quality of Life and Mental Health of

    A Correlational Study: Quality of Life and Mental Health ...