Python's Assignment Operator: Write Robust Assignments

Python's Assignment Operator: Write Robust Assignments

Table of Contents

The Assignment Statement Syntax

The assignment operator, assignments and variables, other assignment syntax, initializing and updating variables, making multiple variables refer to the same object, updating lists through indices and slices, adding and updating dictionary keys, doing parallel assignments, unpacking iterables, providing default argument values, augmented mathematical assignment operators, augmented assignments for concatenation and repetition, augmented bitwise assignment operators, annotated assignment statements, assignment expressions with the walrus operator, managed attribute assignments, define or call a function, work with classes, import modules and objects, use a decorator, access the control variable in a for loop or a comprehension, use the as keyword, access the _ special variable in an interactive session, built-in objects, named constants.

Python’s assignment operators allow you to define assignment statements . This type of statement lets you create, initialize, and update variables throughout your code. Variables are a fundamental cornerstone in every piece of code, and assignment statements give you complete control over variable creation and mutation.

Learning about the Python assignment operator and its use for writing assignment statements will arm you with powerful tools for writing better and more robust Python code.

In this tutorial, you’ll:

  • Use Python’s assignment operator to write assignment statements
  • Take advantage of augmented assignments in Python
  • Explore assignment variants, like assignment expressions and managed attributes
  • Become aware of illegal and dangerous assignments in Python

You’ll dive deep into Python’s assignment statements. To get the most out of this tutorial, you should be comfortable with several basic topics, including variables , built-in data types , comprehensions , functions , and Python keywords . Before diving into some of the later sections, you should also be familiar with intermediate topics, such as object-oriented programming , constants , imports , type hints , properties , descriptors , and decorators .

Free Source Code: Click here to download the free assignment operator source code that you’ll use to write assignment statements that allow you to create, initialize, and update variables in your code.

Assignment Statements and the Assignment Operator

One of the most powerful programming language features is the ability to create, access, and mutate variables . In Python, a variable is a name that refers to a concrete value or object, allowing you to reuse that value or object throughout your code.

To create a new variable or to update the value of an existing one in Python, you’ll use an assignment statement . This statement has the following three components:

  • A left operand, which must be a variable
  • The assignment operator ( = )
  • A right operand, which can be a concrete value , an object , or an expression

Here’s how an assignment statement will generally look in Python:

Here, variable represents a generic Python variable, while expression represents any Python object that you can provide as a concrete value—also known as a literal —or an expression that evaluates to a value.

To execute an assignment statement like the above, Python runs the following steps:

  • Evaluate the right-hand expression to produce a concrete value or object . This value will live at a specific memory address in your computer.
  • Store the object’s memory address in the left-hand variable . This step creates a new variable if the current one doesn’t already exist or updates the value of an existing variable.

The second step shows that variables work differently in Python than in other programming languages. In Python, variables aren’t containers for objects. Python variables point to a value or object through its memory address. They store memory addresses rather than objects.

This behavior difference directly impacts how data moves around in Python, which is always by reference . In most cases, this difference is irrelevant in your day-to-day coding, but it’s still good to know.

The central component of an assignment statement is the assignment operator . This operator is represented by the = symbol, which separates two operands:

  • A value or an expression that evaluates to a concrete value

Operators are special symbols that perform mathematical , logical , and bitwise operations in a programming language. The objects (or object) on which an operator operates are called operands .

Unary operators, like the not Boolean operator, operate on a single object or operand, while binary operators act on two. That means the assignment operator is a binary operator.

Note: Like C , Python uses == for equality comparisons and = for assignments. Unlike C, Python doesn’t allow you to accidentally use the assignment operator ( = ) in an equality comparison.

Equality is a symmetrical relationship, and assignment is not. For example, the expression a == 42 is equivalent to 42 == a . In contrast, the statement a = 42 is correct and legal, while 42 = a isn’t allowed. You’ll learn more about illegal assignments later on.

The right-hand operand in an assignment statement can be any Python object, such as a number , list , string , dictionary , or even a user-defined object. It can also be an expression. In the end, expressions always evaluate to concrete objects, which is their return value.

Here are a few examples of assignments in Python:

The first two sample assignments in this code snippet use concrete values, also known as literals , to create and initialize number and greeting . The third example assigns the result of a math expression to the total variable, while the last example uses a Boolean expression.

Note: You can use the built-in id() function to inspect the memory address stored in a given variable.

Here’s a short example of how this function works:

The number in your output represents the memory address stored in number . Through this address, Python can access the content of number , which is the integer 42 in this example.

If you run this code on your computer, then you’ll get a different memory address because this value varies from execution to execution and computer to computer.

Unlike expressions, assignment statements don’t have a return value because their purpose is to make the association between the variable and its value. That’s why the Python interpreter doesn’t issue any output in the above examples.

Now that you know the basics of how to write an assignment statement, it’s time to tackle why you would want to use one.

The assignment statement is the explicit way for you to associate a name with an object in Python. You can use this statement for two main purposes:

  • Creating and initializing new variables
  • Updating the values of existing variables

When you use a variable name as the left operand in an assignment statement for the first time, you’re creating a new variable. At the same time, you’re initializing the variable to point to the value of the right operand.

On the other hand, when you use an existing variable in a new assignment, you’re updating or mutating the variable’s value. Strictly speaking, every new assignment will make the variable refer to a new value and stop referring to the old one. Python will garbage-collect all the values that are no longer referenced by any existing variable.

Assignment statements not only assign a value to a variable but also determine the data type of the variable at hand. This additional behavior is another important detail to consider in this kind of statement.

Because Python is a dynamically typed language, successive assignments to a given variable can change the variable’s data type. Changing the data type of a variable during a program’s execution is considered bad practice and highly discouraged. It can lead to subtle bugs that can be difficult to track down.

Unlike in math equations, in Python assignments, the left operand must be a variable rather than an expression or a value. For example, the following construct is illegal, and Python flags it as invalid syntax:

In this example, you have expressions on both sides of the = sign, and this isn’t allowed in Python code. The error message suggests that you may be confusing the equality operator with the assignment one, but that’s not the case. You’re really running an invalid assignment.

To correct this construct and convert it into a valid assignment, you’ll have to do something like the following:

In this code snippet, you first import the sqrt() function from the math module. Then you isolate the hypotenuse variable in the original equation by using the sqrt() function. Now your code works correctly.

Now you know what kind of syntax is invalid. But don’t get the idea that assignment statements are rigid and inflexible. In fact, they offer lots of room for customization, as you’ll learn next.

Python’s assignment statements are pretty flexible and versatile. You can write them in several ways, depending on your specific needs and preferences. Here’s a quick summary of the main ways to write assignments in Python:

Up to this point, you’ve mostly learned about the base assignment syntax in the above code snippet. In the following sections, you’ll learn about multiple, parallel, and augmented assignments. You’ll also learn about assignments with iterable unpacking.

Read on to see the assignment statements in action!

Assignment Statements in Action

You’ll find and use assignment statements everywhere in your Python code. They’re a fundamental part of the language, providing an explicit way to create, initialize, and mutate variables.

You can use assignment statements with plain names, like number or counter . You can also use assignments in more complicated scenarios, such as with:

  • Qualified attribute names , like user.name
  • Indices and slices of mutable sequences, like a_list[i] and a_list[i:j]
  • Dictionary keys , like a_dict[key]

This list isn’t exhaustive. However, it gives you some idea of how flexible these statements are. You can even assign multiple values to an equal number of variables in a single line, commonly known as parallel assignment . Additionally, you can simultaneously assign the values in an iterable to a comma-separated group of variables in what’s known as an iterable unpacking operation.

In the following sections, you’ll dive deeper into all these topics and a few other exciting things that you can do with assignment statements in Python.

The most elementary use case of an assignment statement is to create a new variable and initialize it using a particular value or expression:

All these statements create new variables, assigning them initial values or expressions. For an initial value, you should always use the most sensible and least surprising value that you can think of. For example, initializing a counter to something different from 0 may be confusing and unexpected because counters almost always start having counted no objects.

Updating a variable’s current value or state is another common use case of assignment statements. In Python, assigning a new value to an existing variable doesn’t modify the variable’s current value. Instead, it causes the variable to refer to a different value. The previous value will be garbage-collected if no other variable refers to it.

Consider the following examples:

These examples run two consecutive assignments on the same variable. The first one assigns the string "Hello, World!" to a new variable named greeting .

The second assignment updates the value of greeting by reassigning it the "Hi, Pythonistas!" string. In this example, the original value of greeting —the "Hello, World!" string— is lost and garbage-collected. From this point on, you can’t access the old "Hello, World!" string.

Even though running multiple assignments on the same variable during a program’s execution is common practice, you should use this feature with caution. Changing the value of a variable can make your code difficult to read, understand, and debug. To comprehend the code fully, you’ll have to remember all the places where the variable was changed and the sequential order of those changes.

Because assignments also define the data type of their target variables, it’s also possible for your code to accidentally change the type of a given variable at runtime. A change like this can lead to breaking errors, like AttributeError exceptions. Remember that strings don’t have the same methods and attributes as lists or dictionaries, for example.

In Python, you can make several variables reference the same object in a multiple-assignment line. This can be useful when you want to initialize several similar variables using the same initial value:

In this example, you chain two assignment operators in a single line. This way, your two variables refer to the same initial value of 0 . Note how both variables hold the same memory address, so they point to the same instance of 0 .

When it comes to integer variables, Python exhibits a curious behavior. It provides a numeric interval where multiple assignments behave the same as independent assignments. Consider the following examples:

To create n and m , you use independent assignments. Therefore, they should point to different instances of the number 42 . However, both variables hold the same object, which you confirm by comparing their corresponding memory addresses.

Now check what happens when you use a greater initial value:

Now n and m hold different memory addresses, which means they point to different instances of the integer number 300 . In contrast, when you use multiple assignments, both variables refer to the same object. This tiny difference can save you small bits of memory if you frequently initialize integer variables in your code.

The implicit behavior of making independent assignments point to the same integer number is actually an optimization called interning . It consists of globally caching the most commonly used integer values in day-to-day programming.

Under the hood, Python defines a numeric interval in which interning takes place. That’s the interning interval for integer numbers. You can determine this interval using a small script like the following:

This script helps you determine the interning interval by comparing integer numbers from -10 to 500 . If you run the script from your command line, then you’ll get an output like the following:

This output means that if you use a single number between -5 and 256 to initialize several variables in independent statements, then all these variables will point to the same object, which will help you save small bits of memory in your code.

In contrast, if you use a number that falls outside of the interning interval, then your variables will point to different objects instead. Each of these objects will occupy a different memory spot.

You can use the assignment operator to mutate the value stored at a given index in a Python list. The operator also works with list slices . The syntax to write these types of assignment statements is the following:

In the first construct, expression can return any Python object, including another list. In the second construct, expression must return a series of values as a list, tuple, or any other sequence. You’ll get a TypeError if expression returns a single value.

Note: When creating slice objects, you can use up to three arguments. These arguments are start , stop , and step . They define the number that starts the slice, the number at which the slicing must stop retrieving values, and the step between values.

Here’s an example of updating an individual value in a list:

In this example, you update the value at index 2 using an assignment statement. The original number at that index was 7 , and after the assignment, the number is 3 .

Note: Using indices and the assignment operator to update a value in a tuple or a character in a string isn’t possible because tuples and strings are immutable data types in Python.

Their immutability means that you can’t change their items in place :

You can’t use the assignment operator to change individual items in tuples or strings. These data types are immutable and don’t support item assignments.

It’s important to note that you can’t add new values to a list by using indices that don’t exist in the target list:

In this example, you try to add a new value to the end of numbers by using an index that doesn’t exist. This assignment isn’t allowed because there’s no way to guarantee that new indices will be consecutive. If you ever want to add a single value to the end of a list, then use the .append() method.

If you want to update several consecutive values in a list, then you can use slicing and an assignment statement:

In the first example, you update the letters between indices 1 and 3 without including the letter at 3 . The second example updates the letters from index 3 until the end of the list. Note that this slicing appends a new value to the list because the target slice is shorter than the assigned values.

Also note that the new values were provided through a tuple, which means that this type of assignment allows you to use other types of sequences to update your target list.

The third example updates a single value using a slice where both indices are equal. In this example, the assignment inserts a new item into your target list.

In the final example, you use a step of 2 to replace alternating letters with their lowercase counterparts. This slicing starts at index 1 and runs through the whole list, stepping by two items each time.

Updating the value of an existing key or adding new key-value pairs to a dictionary is another common use case of assignment statements. To do these operations, you can use the following syntax:

The first construct helps you update the current value of an existing key, while the second construct allows you to add a new key-value pair to the dictionary.

For example, to update an existing key, you can do something like this:

In this example, you update the current inventory of oranges in your store using an assignment. The left operand is the existing dictionary key, and the right operand is the desired new value.

While you can’t add new values to a list by assignment, dictionaries do allow you to add new key-value pairs using the assignment operator. In the example below, you add a lemon key to inventory :

In this example, you successfully add a new key-value pair to your inventory with 100 units. This addition is possible because dictionaries don’t have consecutive indices but unique keys, which are safe to add by assignment.

The assignment statement does more than assign the result of a single expression to a single variable. It can also cope nicely with assigning multiple values to multiple variables simultaneously in what’s known as a parallel assignment .

Here’s the general syntax for parallel assignments in Python:

Note that the left side of the statement can be either a tuple or a list of variables. Remember that to create a tuple, you just need a series of comma-separated elements. In this case, these elements must be variables.

The right side of the statement must be a sequence or iterable of values or expressions. In any case, the number of elements in the right operand must match the number of variables on the left. Otherwise, you’ll get a ValueError exception.

In the following example, you compute the two solutions of a quadratic equation using a parallel assignment:

In this example, you first import sqrt() from the math module. Then you initialize the equation’s coefficients in a parallel assignment.

The equation’s solution is computed in another parallel assignment. The left operand contains a tuple of two variables, x1 and x2 . The right operand consists of a tuple of expressions that compute the solutions for the equation. Note how each result is assigned to each variable by position.

A classical use case of parallel assignment is to swap values between variables:

The highlighted line does the magic and swaps the values of previous_value and next_value at the same time. Note that in a programming language that doesn’t support this kind of assignment, you’d have to use a temporary variable to produce the same effect:

In this example, instead of using parallel assignment to swap values between variables, you use a new variable to temporarily store the value of previous_value to avoid losing its reference.

For a concrete example of when you’d need to swap values between variables, say you’re learning how to implement the bubble sort algorithm , and you come up with the following function:

In the highlighted line, you use a parallel assignment to swap values in place if the current value is less than the next value in the input list. To dive deeper into the bubble sort algorithm and into sorting algorithms in general, check out Sorting Algorithms in Python .

You can use assignment statements for iterable unpacking in Python. Unpacking an iterable means assigning its values to a series of variables one by one. The iterable must be the right operand in the assignment, while the variables must be the left operand.

Like in parallel assignments, the variables must come as a tuple or list. The number of variables must match the number of values in the iterable. Alternatively, you can use the unpacking operator ( * ) to grab several values in a variable if the number of variables doesn’t match the iterable length.

Here’s the general syntax for iterable unpacking in Python:

Iterable unpacking is a powerful feature that you can use all around your code. It can help you write more readable and concise code. For example, you may find yourself doing something like this:

Whenever you do something like this in your code, go ahead and replace it with a more readable iterable unpacking using a single and elegant assignment, like in the following code snippet:

The numbers list on the right side contains four values. The assignment operator unpacks these values into the four variables on the left side of the statement. The values in numbers get assigned to variables in the same order that they appear in the iterable. The assignment is done by position.

Note: Because Python sets are also iterables, you can use them in an iterable unpacking operation. However, it won’t be clear which value goes to which variable because sets are unordered data structures.

The above example shows the most common form of iterable unpacking in Python. The main condition for the example to work is that the number of variables matches the number of values in the iterable.

What if you don’t know the iterable length upfront? Will the unpacking work? It’ll work if you use the * operator to pack several values into one of your target variables.

For example, say that you want to unpack the first and second values in numbers into two different variables. Additionally, you would like to pack the rest of the values in a single variable conveniently called rest . In this case, you can use the unpacking operator like in the following code:

In this example, first and second hold the first and second values in numbers , respectively. These values are assigned by position. The * operator packs all the remaining values in the input iterable into rest .

The unpacking operator ( * ) can appear at any position in your series of target variables. However, you can only use one instance of the operator:

The iterable unpacking operator works in any position in your list of variables. Note that you can only use one unpacking operator per assignment. Using more than one unpacking operator isn’t allowed and raises a SyntaxError .

Dropping away unwanted values from the iterable is a common use case for the iterable unpacking operator. Consider the following example:

In Python, if you want to signal that a variable won’t be used, then you use an underscore ( _ ) as the variable’s name. In this example, useful holds the only value that you need to use from the input iterable. The _ variable is a placeholder that guarantees that the unpacking works correctly. You won’t use the values that end up in this disposable variable.

Note: In the example above, if your target iterable is a sequence data type, such as a list or tuple, then it’s best to access its last item directly.

To do this, you can use the -1 index:

Using -1 gives you access to the last item of any sequence data type. In contrast, if you’re dealing with iterators , then you won’t be able to use indices. That’s when the *_ syntax comes to your rescue.

The pattern used in the above example comes in handy when you have a function that returns multiple values, and you only need a few of these values in your code. The os.walk() function may provide a good example of this situation.

This function allows you to iterate over the content of a directory recursively. The function returns a generator object that yields three-item tuples. Each tuple contains the following items:

  • The path to the current directory as a string
  • The names of all the immediate subdirectories as a list of strings
  • The names of all the files in the current directory as a list of strings

Now say that you want to iterate over your home directory and list only the files. You can do something like this:

This code will issue a long output depending on the current content of your home directory. Note that you need to provide a string with the path to your user folder for the example to work. The _ placeholder variable will hold the unwanted data.

In contrast, the filenames variable will hold the list of files in the current directory, which is the data that you need. The code will print the list of filenames. Go ahead and give it a try!

The assignment operator also comes in handy when you need to provide default argument values in your functions and methods. Default argument values allow you to define functions that take arguments with sensible defaults. These defaults allow you to call the function with specific values or to simply rely on the defaults.

As an example, consider the following function:

This function takes one argument, called name . This argument has a sensible default value that’ll be used when you call the function without arguments. To provide this sensible default value, you use an assignment.

Note: According to PEP 8 , the style guide for Python code, you shouldn’t use spaces around the assignment operator when providing default argument values in function definitions.

Here’s how the function works:

If you don’t provide a name during the call to greet() , then the function uses the default value provided in the definition. If you provide a name, then the function uses it instead of the default one.

Up to this point, you’ve learned a lot about the Python assignment operator and how to use it for writing different types of assignment statements. In the following sections, you’ll dive into a great feature of assignment statements in Python. You’ll learn about augmented assignments .

Augmented Assignment Operators in Python

Python supports what are known as augmented assignments . An augmented assignment combines the assignment operator with another operator to make the statement more concise. Most Python math and bitwise operators have an augmented assignment variation that looks something like this:

Note that $ isn’t a valid Python operator. In this example, it’s a placeholder for a generic operator. This statement works as follows:

  • Evaluate expression to produce a value.
  • Run the operation defined by the operator that prefixes the = sign, using the previous value of variable and the return value of expression as operands.
  • Assign the resulting value back to variable .

In practice, an augmented assignment like the above is equivalent to the following statement:

As you can conclude, augmented assignments are syntactic sugar . They provide a shorthand notation for a specific and popular kind of assignment.

For example, say that you need to define a counter variable to count some stuff in your code. You can use the += operator to increment counter by 1 using the following code:

In this example, the += operator, known as augmented addition , adds 1 to the previous value in counter each time you run the statement counter += 1 .

It’s important to note that unlike regular assignments, augmented assignments don’t create new variables. They only allow you to update existing variables. If you use an augmented assignment with an undefined variable, then you get a NameError :

Python evaluates the right side of the statement before assigning the resulting value back to the target variable. In this specific example, when Python tries to compute x + 1 , it finds that x isn’t defined.

Great! You now know that an augmented assignment consists of combining the assignment operator with another operator, like a math or bitwise operator. To continue this discussion, you’ll learn which math operators have an augmented variation in Python.

An equation like x = x + b doesn’t make sense in math. But in programming, a statement like x = x + b is perfectly valid and can be extremely useful. It adds b to x and reassigns the result back to x .

As you already learned, Python provides an operator to shorten x = x + b . Yes, the += operator allows you to write x += b instead. Python also offers augmented assignment operators for most math operators. Here’s a summary:

Operator Description Example Equivalent
Adds the right operand to the left operand and stores the result in the left operand
Subtracts the right operand from the left operand and stores the result in the left operand
Multiplies the right operand with the left operand and stores the result in the left operand
Divides the left operand by the right operand and stores the result in the left operand
Performs of the left operand by the right operand and stores the result in the left operand
Finds the remainder of dividing the left operand by the right operand and stores the result in the left operand
Raises the left operand to the power of the right operand and stores the result in the left operand

The Example column provides generic examples of how to use the operators in actual code. Note that x must be previously defined for the operators to work correctly. On the other hand, y can be either a concrete value or an expression that returns a value.

Note: The matrix multiplication operator ( @ ) doesn’t support augmented assignments yet.

Consider the following example of matrix multiplication using NumPy arrays:

Note that the exception traceback indicates that the operation isn’t supported yet.

To illustrate how augmented assignment operators work, say that you need to create a function that takes an iterable of numeric values and returns their sum. You can write this function like in the code below:

In this function, you first initialize total to 0 . In each iteration, the loop adds a new number to total using the augmented addition operator ( += ). When the loop terminates, total holds the sum of all the input numbers. Variables like total are known as accumulators . The += operator is typically used to update accumulators.

Note: Computing the sum of a series of numeric values is a common operation in programming. Python provides the built-in sum() function for this specific computation.

Another interesting example of using an augmented assignment is when you need to implement a countdown while loop to reverse an iterable. In this case, you can use the -= operator:

In this example, custom_reversed() is a generator function because it uses yield . Calling the function creates an iterator that yields items from the input iterable in reverse order. To decrement the control variable, index , you use an augmented subtraction statement that subtracts 1 from the variable in every iteration.

Note: Similar to summing the values in an iterable, reversing an iterable is also a common requirement. Python provides the built-in reversed() function for this specific computation, so you don’t have to implement your own. The above example only intends to show the -= operator in action.

Finally, counters are a special type of accumulators that allow you to count objects. Here’s an example of a letter counter:

To create this counter, you use a Python dictionary. The keys store the letters. The values store the counts. Again, to increment the counter, you use an augmented addition.

Counters are so common in programming that Python provides a tool specially designed to facilitate the task of counting. Check out Python’s Counter: The Pythonic Way to Count Objects for a complete guide on how to use this tool.

The += and *= augmented assignment operators also work with sequences , such as lists, tuples, and strings. The += operator performs augmented concatenations , while the *= operator performs augmented repetition .

These operators behave differently with mutable and immutable data types:

Operator Description Example
Runs an augmented concatenation operation on the target sequence. Mutable sequences are updated in place. If the sequence is immutable, then a new sequence is created and assigned back to the target name.
Adds to itself times. Mutable sequences are updated in place. If the sequence is immutable, then a new sequence is created and assigned back to the target name.

Note that the augmented concatenation operator operates on two sequences, while the augmented repetition operator works on a sequence and an integer number.

Consider the following examples and pay attention to the result of calling the id() function:

Mutable sequences like lists support the += augmented assignment operator through the .__iadd__() method, which performs an in-place addition. This method mutates the underlying list, appending new values to its end.

Note: If the left operand is mutable, then x += y may not be completely equivalent to x = x + y . For example, if you do list_1 = list_1 + list_2 instead of list_1 += list_2 above, then you’ll create a new list instead of mutating the existing one. This may be important if other variables refer to the same list.

Immutable sequences, such as tuples and strings, don’t provide an .__iadd__() method. Therefore, augmented concatenations fall back to the .__add__() method, which doesn’t modify the sequence in place but returns a new sequence.

There’s another difference between mutable and immutable sequences when you use them in an augmented concatenation. Consider the following examples:

With mutable sequences, the data to be concatenated can come as a list, tuple, string, or any other iterable. In contrast, with immutable sequences, the data can only come as objects of the same type. You can concatenate tuples to tuples and strings to strings, for example.

Again, the augmented repetition operator works with a sequence on the left side of the operator and an integer on the right side. This integer value represents the number of repetitions to get in the resulting sequence:

When the *= operator operates on a mutable sequence, it falls back to the .__imul__() method, which performs the operation in place, modifying the underlying sequence. In contrast, if *= operates on an immutable sequence, then .__mul__() is called, returning a new sequence of the same type.

Note: Values of n less than 0 are treated as 0 , which returns an empty sequence of the same data type as the target sequence on the left side of the *= operand.

Note that a_list[0] is a_list[3] returns True . This is because the *= operator doesn’t make a copy of the repeated data. It only reflects the data. This behavior can be a source of issues when you use the operator with mutable values.

For example, say that you want to create a list of lists to represent a matrix, and you need to initialize the list with n empty lists, like in the following code:

In this example, you use the *= operator to populate matrix with three empty lists. Now check out what happens when you try to populate the first sublist in matrix :

The appended values are reflected in the three sublists. This happens because the *= operator doesn’t make copies of the data that you want to repeat. It only reflects the data. Therefore, every sublist in matrix points to the same object and memory address.

If you ever need to initialize a list with a bunch of empty sublists, then use a list comprehension :

This time, when you populate the first sublist of matrix , your changes aren’t propagated to the other sublists. This is because all the sublists are different objects that live in different memory addresses.

Bitwise operators also have their augmented versions. The logic behind them is similar to that of the math operators. The following table summarizes the augmented bitwise operators that Python provides:

Operator Operation Example Equivalent
Augmented bitwise AND ( )
Augmented bitwise OR ( )
Augmented bitwise XOR ( )
Augmented bitwise right shift
Augmented bitwise left shift

The augmented bitwise assignment operators perform the intended operation by taking the current value of the left operand as a starting point for the computation. Consider the following example, which uses the & and &= operators:

Programmers who work with high-level languages like Python rarely use bitwise operations in day-to-day coding. However, these types of operations can be useful in some situations.

For example, say that you’re implementing a Unix-style permission system for your users to access a given resource. In this case, you can use the characters "r" for reading, "w" for writing, and "x" for execution permissions, respectively. However, using bit-based permissions could be more memory efficient:

You can assign permissions to your users with the OR bitwise operator or the augmented OR bitwise operator. Finally, you can use the bitwise AND operator to check if a user has a certain permission, as you did in the final two examples.

You’ve learned a lot about augmented assignment operators and statements in this and the previous sections. These operators apply to math, concatenation, repetition, and bitwise operations. Now you’re ready to look at other assignment variants that you can use in your code or find in other developers’ code.

Other Assignment Variants

So far, you’ve learned that Python’s assignment statements and the assignment operator are present in many different scenarios and use cases. Those use cases include variable creation and initialization, parallel assignments, iterable unpacking, augmented assignments, and more.

In the following sections, you’ll learn about a few variants of assignment statements that can be useful in your future coding. You can also find these assignment variants in other developers’ code. So, you should be aware of them and know how they work in practice.

In short, you’ll learn about:

  • Annotated assignment statements with type hints
  • Assignment expressions with the walrus operator
  • Managed attribute assignments with properties and descriptors
  • Implicit assignments in Python

These topics will take you through several interesting and useful examples that showcase the power of Python’s assignment statements.

PEP 526 introduced a dedicated syntax for variable annotation back in Python 3.6 . The syntax consists of the variable name followed by a colon ( : ) and the variable type:

Even though these statements declare three variables with their corresponding data types, the variables aren’t actually created or initialized. So, for example, you can’t use any of these variables in an augmented assignment statement:

If you try to use one of the previously declared variables in an augmented assignment, then you get a NameError because the annotation syntax doesn’t define the variable. To actually define it, you need to use an assignment.

The good news is that you can use the variable annotation syntax in an assignment statement with the = operator:

The first statement in this example is what you can call an annotated assignment statement in Python. You may ask yourself why you should use type annotations in this type of assignment if everybody can see that counter holds an integer number. You’re right. In this example, the variable type is unambiguous.

However, imagine what would happen if you found a variable initialization like the following:

What would be the data type of each user in users ? If the initialization of users is far away from the definition of the User class, then there’s no quick way to answer this question. To clarify this ambiguity, you can provide the appropriate type hint for users :

Now you’re clearly communicating that users will hold a list of User instances. Using type hints in assignment statements that initialize variables to empty collection data types—such as lists, tuples, or dictionaries—allows you to provide more context about how your code works. This practice will make your code more explicit and less error-prone.

Up to this point, you’ve learned that regular assignment statements with the = operator don’t have a return value. They just create or update variables. Therefore, you can’t use a regular assignment to assign a value to a variable within the context of an expression.

Python 3.8 changed this by introducing a new type of assignment statement through PEP 572 . This new statement is known as an assignment expression or named expression .

Note: Expressions are a special type of statement in Python. Their distinguishing characteristic is that expressions always have a return value, which isn’t the case with all types of statements.

Unlike regular assignments, assignment expressions have a return value, which is why they’re called expressions in the first place. This return value is automatically assigned to a variable. To write an assignment expression, you must use the walrus operator ( := ), which was named for its resemblance to the eyes and tusks of a walrus lying on its side.

The general syntax of an assignment statement is as follows:

This expression looks like a regular assignment. However, instead of using the assignment operator ( = ), it uses the walrus operator ( := ). For the expression to work correctly, the enclosing parentheses are required in most use cases. However, there are certain situations in which these parentheses are superfluous. Either way, they won’t hurt you.

Assignment expressions come in handy when you want to reuse the result of an expression or part of an expression without using a dedicated assignment to grab this value beforehand.

Note: Assignment expressions with the walrus operator have several practical use cases. They also have a few restrictions. For example, they’re illegal in certain contexts, such as lambda functions, parallel assignments, and augmented assignments.

For a deep dive into this special type of assignment, check out The Walrus Operator: Python’s Assignment Expressions .

A particularly handy use case for assignment expressions is when you need to grab the result of an expression used in the context of a conditional statement. For example, say that you need to write a function to compute the mean of a sample of numeric values. Without the walrus operator, you could do something like this:

In this example, the sample size ( n ) is a value that you need to reuse in two different computations. First, you need to check whether the sample has data points or not. Then you need to use the sample size to compute the mean. To be able to reuse n , you wrote a dedicated assignment statement at the beginning of your function to grab the sample size.

You can avoid this extra step by combining it with the first use of the target value, len(sample) , using an assignment expression like the following:

The assignment expression introduced in the conditional computes the sample size and assigns it to n . This way, you guarantee that you have a reference to the sample size to use in further computations.

Because the assignment expression returns the sample size anyway, the conditional can check whether that size equals 0 or not and then take a certain course of action depending on the result of this check. The return statement computes the sample’s mean and sends the result back to the function caller.

Python provides a few tools that allow you to fine-tune the operations behind the assignment of attributes. The attributes that run implicit operations on assignments are commonly referred to as managed attributes .

Properties are the most commonly used tool for providing managed attributes in your classes. However, you can also use descriptors and, in some cases, the .__setitem__() special method.

To understand what fine-tuning the operation behind an assignment means, say that you need a Point class that only allows numeric values for its coordinates, x and y . To write this class, you must set up a validation mechanism to reject non-numeric values. You can use properties to attach the validation functionality on top of x and y .

Here’s how you can write your class:

In Point , you use properties for the .x and .y coordinates. Each property has a getter and a setter method . The getter method returns the attribute at hand. The setter method runs the input validation using a try … except block and the built-in float() function. Then the method assigns the result to the actual attribute.

Here’s how your class works in practice:

When you use a property-based attribute as the left operand in an assignment statement, Python automatically calls the property’s setter method, running any computation from it.

Because both .x and .y are properties, the input validation runs whenever you assign a value to either attribute. In the first example, the input values are valid numbers and the validation passes. In the final example, "one" isn’t a valid numeric value, so the validation fails.

If you look at your Point class, you’ll note that it follows a repetitive pattern, with the getter and setter methods looking quite similar. To avoid this repetition, you can use a descriptor instead of a property.

A descriptor is a class that implements the descriptor protocol , which consists of four special methods :

  • .__get__() runs when you access the attribute represented by the descriptor.
  • .__set__() runs when you use the attribute in an assignment statement.
  • .__delete__() runs when you use the attribute in a del statement.
  • .__set_name__() sets the attribute’s name, creating a name-aware attribute.

Here’s how your code may look if you use a descriptor to represent the coordinates of your Point class:

You’ve removed repetitive code by defining Coordinate as a descriptor that manages the input validation in a single place. Go ahead and run the following code to try out the new implementation of Point :

Great! The class works as expected. Thanks to the Coordinate descriptor, you now have a more concise and non-repetitive version of your original code.

Another way to fine-tune the operations behind an assignment statement is to provide a custom implementation of .__setitem__() in your class. You’ll use this method in classes representing mutable data collections, such as custom list-like or dictionary-like classes.

As an example, say that you need to create a dictionary-like class that stores its keys in lowercase letters:

In this example, you create a dictionary-like class by subclassing UserDict from collections . Your class implements a .__setitem__() method, which takes key and value as arguments. The method uses str.lower() to convert key into lowercase letters before storing it in the underlying dictionary.

Python implicitly calls .__setitem__() every time you use a key as the left operand in an assignment statement. This behavior allows you to tweak how you process the assignment of keys in your custom dictionary.

Implicit Assignments in Python

Python implicitly runs assignments in many different contexts. In most cases, these implicit assignments are part of the language syntax. In other cases, they support specific behaviors.

Whenever you complete an action in the following list, Python runs an implicit assignment for you:

  • Define or call a function
  • Define or instantiate a class
  • Use the current instance , self
  • Import modules and objects
  • Use a decorator
  • Use the control variable in a for loop or a comprehension
  • Use the as qualifier in with statements , imports, and try … except blocks
  • Access the _ special variable in an interactive session

Behind the scenes, Python performs an assignment in every one of the above situations. In the following subsections, you’ll take a tour of all these situations.

When you define a function, the def keyword implicitly assigns a function object to your function’s name. Here’s an example:

From this point on, the name greet refers to a function object that lives at a given memory address in your computer. You can call the function using its name and a pair of parentheses with appropriate arguments. This way, you can reuse greet() wherever you need it.

If you call your greet() function with fellow as an argument, then Python implicitly assigns the input argument value to the name parameter on the function’s definition. The parameter will hold a reference to the input arguments.

When you define a class with the class keyword, you’re assigning a specific name to a class object . You can later use this name to create instances of that class. Consider the following example:

In this example, the name User holds a reference to a class object, which was defined in __main__.User . Like with a function, when you call the class’s constructor with the appropriate arguments to create an instance, Python assigns the arguments to the parameters defined in the class initializer .

Another example of implicit assignments is the current instance of a class, which in Python is called self by convention. This name implicitly gets a reference to the current object whenever you instantiate a class. Thanks to this implicit assignment, you can access .name and .job from within the class without getting a NameError in your code.

Import statements are another variant of implicit assignments in Python. Through an import statement, you assign a name to a module object, class, function, or any other imported object. This name is then created in your current namespace so that you can access it later in your code:

In this example, you import the sys module object from the standard library and assign it to the sys name, which is now available in your namespace, as you can conclude from the second call to the built-in dir() function.

You also run an implicit assignment when you use a decorator in your code. The decorator syntax is just a shortcut for a formal assignment like the following:

Here, you call decorator() with a function object as an argument. This call will typically add functionality on top of the existing function, func() , and return a function object, which is then reassigned to the func name.

The decorator syntax is syntactic sugar for replacing the previous assignment, which you can now write as follows:

Even though this new code looks pretty different from the above assignment, the code implicitly runs the same steps.

Another situation in which Python automatically runs an implicit assignment is when you use a for loop or a comprehension. In both cases, you can have one or more control variables that you then use in the loop or comprehension body:

The memory address of control_variable changes on each iteration of the loop. This is because Python internally reassigns a new value from the loop iterable to the loop control variable on each cycle.

The same behavior appears in comprehensions:

In the end, comprehensions work like for loops but use a more concise syntax. This comprehension creates a new list of strings that mimic the output from the previous example.

The as keyword in with statements, except clauses, and import statements is another example of an implicit assignment in Python. This time, the assignment isn’t completely implicit because the as keyword provides an explicit way to define the target variable.

In a with statement, the target variable that follows the as keyword will hold a reference to the context manager that you’re working with. As an example, say that you have a hello.txt file with the following content:

You want to open this file and print each of its lines on your screen. In this case, you can use the with statement to open the file using the built-in open() function.

In the example below, you accomplish this. You also add some calls to print() that display information about the target variable defined by the as keyword:

This with statement uses the open() function to open hello.txt . The open() function is a context manager that returns a text file object represented by an io.TextIOWrapper instance.

Since you’ve defined a hello target variable with the as keyword, now that variable holds a reference to the file object itself. You confirm this by printing the object and its memory address. Finally, the for loop iterates over the lines and prints this content to the screen.

When it comes to using the as keyword in the context of an except clause, the target variable will contain an exception object if any exception occurs:

In this example, you run a division that raises a ZeroDivisionError . The as keyword assigns the raised exception to error . Note that when you print the exception object, you get only the message because exceptions have a custom .__str__() method that supports this behavior.

There’s a final detail to remember when using the as specifier in a try … except block like the one in the above example. Once you leave the except block, the target variable goes out of scope , and you can’t use it anymore.

Finally, Python’s import statements also support the as keyword. In this context, you can use as to import objects with a different name:

In these examples, you use the as keyword to import the numpy package with the np name and pandas with the name pd . If you call dir() , then you’ll realize that np and pd are now in your namespace. However, the numpy and pandas names are not.

Using the as keyword in your imports comes in handy when you want to use shorter names for your objects or when you need to use different objects that originally had the same name in your code. It’s also useful when you want to make your imported names non-public using a leading underscore, like in import sys as _sys .

The final implicit assignment that you’ll learn about in this tutorial only occurs when you’re using Python in an interactive session. Every time you run a statement that returns a value, the interpreter stores the result in a special variable denoted by a single underscore character ( _ ).

You can access this special variable as you’d access any other variable:

These examples cover several situations in which Python internally uses the _ variable. The first two examples evaluate expressions. Expressions always have a return value, which is automatically assigned to the _ variable every time.

When it comes to function calls, note that if your function returns a fruitful value, then _ will hold it. In contrast, if your function returns None , then the _ variable will remain untouched.

The next example consists of a regular assignment statement. As you already know, regular assignments don’t return any value, so the _ variable isn’t updated after these statements run. Finally, note that accessing a variable in an interactive session returns the value stored in the target variable. This value is then assigned to the _ variable.

Note that since _ is a regular variable, you can use it in other expressions:

In this example, you first create a list of values. Then you call len() to get the number of values in the list. Python automatically stores this value in the _ variable. Finally, you use _ to compute the mean of your list of values.

Now that you’ve learned about some of the implicit assignments that Python runs under the hood, it’s time to dig into a final assignment-related topic. In the following few sections, you’ll learn about some illegal and dangerous assignments that you should be aware of and avoid in your code.

Illegal and Dangerous Assignments in Python

In Python, you’ll find a few situations in which using assignments is either forbidden or dangerous. You must be aware of these special situations and try to avoid them in your code.

In the following sections, you’ll learn when using assignment statements isn’t allowed in Python. You’ll also learn about some situations in which using assignments should be avoided if you want to keep your code consistent and robust.

You can’t use Python keywords as variable names in assignment statements. This kind of assignment is explicitly forbidden. If you try to use a keyword as a variable name in an assignment, then you get a SyntaxError :

Whenever you try to use a keyword as the left operand in an assignment statement, you get a SyntaxError . Keywords are an intrinsic part of the language and can’t be overridden.

If you ever feel the need to name one of your variables using a Python keyword, then you can append an underscore to the name of your variable:

In this example, you’re using the desired name for your variables. Because you added a final underscore to the names, Python doesn’t recognize them as keywords, so it doesn’t raise an error.

Note: Even though adding an underscore at the end of a name is an officially recommended practice , it can be confusing sometimes. Therefore, try to find an alternative name or use a synonym whenever you find yourself using this convention.

For example, you can write something like this:

In this example, using the name booking_class for your variable is way clearer and more descriptive than using class_ .

You’ll also find that you can use only a few keywords as part of the right operand in an assignment statement. Those keywords will generally define simple statements that return a value or object. These include lambda , and , or , not , True , False , None , in , and is . You can also use the for keyword when it’s part of a comprehension and the if keyword when it’s used as part of a ternary operator .

In an assignment, you can never use a compound statement as the right operand. Compound statements are those that require an indented block, such as for and while loops, conditionals, with statements, try … except blocks, and class or function definitions.

Sometimes, you need to name variables, but the desired or ideal name is already taken and used as a built-in name. If this is your case, think harder and find another name. Don’t shadow the built-in.

Shadowing built-in names can cause hard-to-identify problems in your code. A common example of this issue is using list or dict to name user-defined variables. In this case, you override the corresponding built-in names, which won’t work as expected if you use them later in your code.

Consider the following example:

The exception in this example may sound surprising. How come you can’t use list() to build a list from a call to map() that returns a generator of square numbers?

By using the name list to identify your list of numbers, you shadowed the built-in list name. Now that name points to a list object rather than the built-in class. List objects aren’t callable, so your code no longer works.

In Python, you’ll have nothing that warns against using built-in, standard-library, or even relevant third-party names to identify your own variables. Therefore, you should keep an eye out for this practice. It can be a source of hard-to-debug errors.

In programming, a constant refers to a name associated with a value that never changes during a program’s execution. Unlike other programming languages, Python doesn’t have a dedicated syntax for defining constants. This fact implies that Python doesn’t have constants in the strict sense of the word.

Python only has variables. If you need a constant in Python, then you’ll have to define a variable and guarantee that it won’t change during your code’s execution. To do that, you must avoid using that variable as the left operand in an assignment statement.

To tell other Python programmers that a given variable should be treated as a constant, you must write your variable’s name in capital letters with underscores separating the words. This naming convention has been adopted by the Python community and is a recommendation that you’ll find in the Constants section of PEP 8 .

In the following examples, you define some constants in Python:

The problem with these constants is that they’re actually variables. Nothing prevents you from changing their value during your code’s execution. So, at any time, you can do something like the following:

These assignments modify the value of two of your original constants. Python doesn’t complain about these changes, which can cause issues later in your code. As a Python developer, you must guarantee that named constants in your code remain constant.

The only way to do that is never to use named constants in an assignment statement other than the constant definition.

You’ve learned a lot about Python’s assignment operators and how to use them for writing assignment statements . With this type of statement, you can create, initialize, and update variables according to your needs. Now you have the required skills to fully manage the creation and mutation of variables in your Python code.

In this tutorial, you’ve learned how to:

  • Write assignment statements using Python’s assignment operators
  • Work with augmented assignments in Python
  • Explore assignment variants, like assignment expression and managed attributes
  • Identify illegal and dangerous assignments in Python

Learning about the Python assignment operator and how to use it in assignment statements is a fundamental skill in Python. It empowers you to write reliable and effective Python code.

🐍 Python Tricks 💌

Get a short & sweet Python Trick delivered to your inbox every couple of days. No spam ever. Unsubscribe any time. Curated by the Real Python team.

Python Tricks Dictionary Merge

About Leodanis Pozo Ramos

Leodanis Pozo Ramos

Leodanis is an industrial engineer who loves Python and software development. He's a self-taught Python developer with 6+ years of experience. He's an avid technical writer with a growing number of articles published on Real Python and other sites.

Each tutorial at Real Python is created by a team of developers so that it meets our high quality standards. The team members who worked on this tutorial are:

Aldren Santos

Master Real-World Python Skills With Unlimited Access to Real Python

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

What Do You Think?

What’s your #1 takeaway or favorite thing you learned? How are you going to put your newfound skills to use? Leave a comment below and let us know.

Commenting Tips: The most useful comments are those written with the goal of learning from or helping out other students. Get tips for asking good questions and get answers to common questions in our support portal . Looking for a real-time conversation? Visit the Real Python Community Chat or join the next “Office Hours” Live Q&A Session . Happy Pythoning!

Keep Learning

Related Topics: intermediate best-practices python

Keep reading Real Python by creating a free account or signing in:

Already have an account? Sign-In

Almost there! Complete this form and click the button below to gain instant access:

Python's Assignment Operator: Write Robust Assignments (Source Code)

🔒 No spam. We take your privacy seriously.

assignment program

Browse Course Material

Course info, instructors.

  • Daniel Weller
  • Sharat Chikkerur

Departments

  • Electrical Engineering and Computer Science

As Taught In

  • Programming Languages
  • Software Design and Engineering

Learning Resource Types

Practical programming in c, assignments.

ASSN # TOPICS ASSIGNMENTS SOLUTIONS
1 Writing, compiling, and debugging programs; preprocessor macros; C file structure; variables; functions and problem statements; returning from functions ( ) ( )
2 Types, operators, expressions ( ) ( )
3 Control flow, functions, variable scope, static and global variables, I/O: printf and scanf, file I/O, character arrays, error handling, labels and goto

( )

( ) (This ZIP file contains: 1 .txt file and 2 .c files.)

( )
4 Pointers, arrays, strings, searching and sorting algorithms ( ) ( )
5 Linked lists, trees ( ) ( )
6a Pointers to pointers, multidimensional arrays, stacks and queues

( )

( ) (This ZIP file contains: 1 .txt file and 2 .c files.)

( )
6b Function pointers, hash table

( )

( ) (This ZIP file contains: 1 .txt file and 2 .c files.)

( )
7 Using and creating libraries, B-trees and priority queues

( )

( ) (This ZIP file contains: 2 .c files and 1 .db file.)

( ) (This ZIP file contains: 5 .txt files and 5 .c files.)

facebook

You are leaving MIT OpenCourseWare

for Education

  • Google Classroom
  • Google Workspace Admin
  • Google Cloud

Google Classroom is turning 10. Find out what we've learned and what we're doing next. 🎉

Easily distribute, analyze, and grade student work with assignments for your lms.

Assignments is an application for your learning management system (LMS). It helps educators save time grading and guides students to turn in their best work with originality reports — all through the collaborative power of Google Workspace for Education.

  • Get started
  • Explore originality reports

TBD

Bring your favorite tools together within your LMS

Make Google Docs and Google Drive compatible with your LMS

Simplify assignment management with user-friendly Google Workspace productivity tools

Built with the latest Learning Tools Interoperability (LTI) standards for robust security and easy installation in your LMS

Save time distributing and grading classwork

Distribute personalized copies of Google Drive templates and worksheets to students

Grade consistently and transparently with rubrics integrated into student work

Add rich feedback faster using the customizable comment bank

Examine student work to ensure authenticity

Compare student work against hundreds of billions of web pages and over 40 million books with originality reports

Make student-to-student comparisons on your domain-owned repository of past submissions when you sign up for the Teaching and Learning Upgrade or Google Workspace for Education Plus

Allow students to scan their own work for recommended citations up to three times

Trust in high security standards

Protect student privacy — data is owned and managed solely by you and your students

Provide an ad-free experience for all your users

Compatible with LTI version 1.1 or higher and meets rigorous compliance standards

Google Classroom picture

Product demos

Experience google workspace for education in action. explore premium features in detail via step-by-step demos to get a feel for how they work in the classroom..

“Assignments enable faculty to save time on the mundane parts of grading and...spend more time on providing more personalized and relevant feedback to students.” Benjamin Hommerding , Technology Innovationist, St. Norbert College

assignment program

Classroom users get the best of Assignments built-in

Find all of the same features of Assignments in your existing Classroom environment

  • Learn more about Classroom

Explore resources to get up and running

Discover helpful resources to get up to speed on using Assignments and find answers to commonly asked questions.

  • Visit Help Center

PDF

Get a quick overview of Assignments to help Educators learn how they can use it in their classrooms.

  • Download overview

PDF

Get started guide

Start using Assignments in your courses with this step-by-step guide for instructors.

  • Download guide

assignment program

Teacher Center Assignments resources

Find educator tools and resources to get started with Assignments.

  • Visit Teacher Center

Video

How to use Assignments within your LMS

Watch this brief video on how Educators can use Assignments.

  • Watch video

assignment program

Turn on Assignments in your LMS

Contact your institution’s administrator to turn on Assignments within your LMS.

  • Admin setup

assignment program

Explore a suite of tools for your classroom with Google Workspace for Education

You're now viewing content for a different region..

For content more relevant to your region, we suggest:

Sign up here for updates, insights, resources, and more.

JS Tutorial

Js versions, js functions, js html dom, js browser bom, js web apis, js vs jquery, js graphics, js examples, js references, javascript assignment, javascript assignment operators.

Assignment operators assign values to JavaScript variables.

Operator Example Same As
= x = y x = y
+= x += y x = x + y
-= x -= y x = x - y
*= x *= y x = x * y
/= x /= y x = x / y
%= x %= y x = x % y
**= x **= y x = x ** y

Shift Assignment Operators

Operator Example Same As
<<= x <<= y x = x << y
>>= x >>= y x = x >> y
>>>= x >>>= y x = x >>> y

Bitwise Assignment Operators

Operator Example Same As
&= x &= y x = x & y
^= x ^= y x = x ^ y
|= x |= y x = x | y

Logical Assignment Operators

Operator Example Same As
&&= x &&= y x = x && (x = y)
||= x ||= y x = x || (x = y)
??= x ??= y x = x ?? (x = y)

The = Operator

The Simple Assignment Operator assigns a value to a variable.

Simple Assignment Examples

The += operator.

The Addition Assignment Operator adds a value to a variable.

Addition Assignment Examples

The -= operator.

The Subtraction Assignment Operator subtracts a value from a variable.

Subtraction Assignment Example

The *= operator.

The Multiplication Assignment Operator multiplies a variable.

Multiplication Assignment Example

The **= operator.

The Exponentiation Assignment Operator raises a variable to the power of the operand.

Exponentiation Assignment Example

The /= operator.

The Division Assignment Operator divides a variable.

Division Assignment Example

The %= operator.

The Remainder Assignment Operator assigns a remainder to a variable.

Remainder Assignment Example

Advertisement

The <<= Operator

The Left Shift Assignment Operator left shifts a variable.

Left Shift Assignment Example

The >>= operator.

The Right Shift Assignment Operator right shifts a variable (signed).

Right Shift Assignment Example

The >>>= operator.

The Unsigned Right Shift Assignment Operator right shifts a variable (unsigned).

Unsigned Right Shift Assignment Example

The &= operator.

The Bitwise AND Assignment Operator does a bitwise AND operation on two operands and assigns the result to the the variable.

Bitwise AND Assignment Example

The |= operator.

The Bitwise OR Assignment Operator does a bitwise OR operation on two operands and assigns the result to the variable.

Bitwise OR Assignment Example

The ^= operator.

The Bitwise XOR Assignment Operator does a bitwise XOR operation on two operands and assigns the result to the variable.

Bitwise XOR Assignment Example

The &&= operator.

The Logical AND assignment operator is used between two values.

If the first value is true, the second value is assigned.

Logical AND Assignment Example

The &&= operator is an ES2020 feature .

The ||= Operator

The Logical OR assignment operator is used between two values.

If the first value is false, the second value is assigned.

Logical OR Assignment Example

The ||= operator is an ES2020 feature .

The ??= Operator

The Nullish coalescing assignment operator is used between two values.

If the first value is undefined or null, the second value is assigned.

Nullish Coalescing Assignment Example

The ??= operator is an ES2020 feature .

Test Yourself With Exercises

Use the correct assignment operator that will result in x being 15 (same as x = x + y ).

Start the Exercise

Get Certified

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

' src=

  • All Courses
  • Privacy Policy

' src=

Swayam Solver

Learn Programming & Prepare for NPTEL Exams... Swayam Solver is your one-stop destination for NPTEL exam preparation.

NPTEL Programming In Java Programming Assignment July-2024 Swayam

NPTEL   »   Programming in Java

   Please scroll down for latest Programs.  👇 

Week 01 : Programming Assignment 1

Write a Java program to print the area and perimeter of a rectangle.

Public Test CasesInputExpected OutputActual OutputStatus
Private Test cases used for EvaluationStatus
Test Case 1

Week 01 : Programming Assignment 2

Write a Java program and compute the sum of an integer's digits.

Week 01 : Programming Assignment 3

Write a Java program to display n terms of natural numbers and their sum.

(Remember to match the output given exactly, including the spaces and new lines)

(passed with presentation error means you will get full marks)

Week 01 : Programming Assignment 4

Write a Java program to make such a pattern like a right angle triangle with the number increased by 1.

(Ignore presentation errors for this and all future programming assignments) (passed with presentation error means  you will get full marks )

Week 01 : Programming Assignment 5

Write a Java program to convert an integer number to a binary number.

Week 02 : Programming Assignment 1

Complete the code segment to call the method  display() of class Former first and then call display() method of class Latter.

Week 02 : Programming Assignment 2

Create a  class Student  with  private  attributes for  name  and  age .

Use a constructor to initialize these attributes and provide public getter methods to access them.

In the main method, an instance of Student is created and the student's details are printed.

Guideline to Solve:

§   Define the  Student class  with  private  attributes.

§   Use a constructor to initialize the attributes.

§   Implement getter methods for the attributes.

Follow the naming convetion used in the Fixed code.

Week 02 : Programming Assignment 3

Create a class  Rectangle  with attributes  length  and  width .

Provide two constructors: one with no parameters ( default to 1 ) and

another with parameters to initialize the attributes.

Use the  this  keyword to avoid name space collision.

Create a getArea() function that returns the area of the rectangle.

§   Define the  Rectangle  class with attributes and constructors.

§   Define a default Rectangle constructor that inializes length and width to 1.

§   Use the  this  keyword in the parameterized constructor.

§   Define a getArea() funtion that returns the area of there rectangle

Week 02 : Programming Assignment 4

Create a class  Circle  that encapsulates the properties of a circle.

The class should have a private field for the radius, a constructor to initialize the radius, and methods to calculate the area and circumference of the circle.

NOTE: use Math.PI for PI calculations (DO NOT USE 22/7)

§   Define the  Circle  class with attributes and constructors.

§   Define a getArea() funtion that returns the area of there Circle (use Math.PI)

§   Define a getCircumference() funtion that returns the circumference of there Circle (use Math.PI)

Week 02 : Programming Assignment 5

Complete the code by creating the constructor and the getter functions for a class Dog as defined below.

Week 03 : Programming Assignment 1

Create a class Department having a method  getCourses  that prints  "These are the department's courses" . It will have two subclasses , ComputerScience and MechanicalEngineering , each having a method with the same name that prints specific courses for the respective departments.Call the method by creating an object of each of the three classes.

Week 03 : Programming Assignment 2

Week 03 : programming assignment 3.

Write a program to print the factorial of a number by defining a recursive method named 'Factorial'.

Factorial of any number n is represented by n! and is equal to 1*2*3*....*(n-1)*n. E.g.-

4! = 1*2*3*4 = 24

3! = 3*2*1 = 6

2! = 2*1 = 2

Week 03 : Programming Assignment 4

Write a program to take integer inputs from user until he/she presses q ( Ask to press q to quit after every integer input ). Print average and product of all numbers.

Week 03 : Programming Assignment 5

Write a Java program to create a class called Employee with methods called work() and getSalary(). Create a subclass called HRManager that overrides the work() method and adds a new method called addEmployee().

Week 04 : Programming Assignment 1

Complete the code segment to swap two numbers using call by object reference.

Week 04 : Programming Assignment 2

1 - Problem Statement:        

Define a class  Point  with members

§   private double x;

§   private double y;

and methods:

§   public Point(double x, double y){}  // Constructor to create a new point?

§   public double slope(Point p2){} // Function to return the slope of the line formed from current Point and another Point (Assume that input will always be chosen so that slope will never be infinite)

Week 04 : Programming Assignment 3

This program to exercise the create static and non-static methods. A partial code is given, you have to define two methods, namely sum( ) and multiply( ). These methods have been called to find the sum and product of two numbers. Complete the code segment as instructed.  

Week 04 : Programming Assignment 4

The program in this assignment is attempted to print the following output:

-----------------OUTPUT-------------------

This is large

This is medium

This is small

This is extra-large

-------------------------------------------------

However, the code is intentionally with some bugs in it. Debug the code to execute the program successfully.

Week 04 : Programming Assignment 5

Consider First n even numbers starting from zero(0).Complete the code segment to calculate sum of  all the numbers divisible by 3 from 0 to n. Print the sum. Example:

Input: n = 5

Even number divisible by 3:0 6

Week 05 : Programming Assignment 1

Public Test CasesInputExpected OutputActual OutputStatus

Week 05 : Programming Assignment 2

Write a program to create an interface Searchable with a method search(String keyword) that searches for a given keyword in a text document. Create two classes Document and WebPage that implement the Searchable interface and provide their own implementations of the search() method.

Week 05 : Programming Assignment 3

Week 05 : programming assignment 4, week 05 : programming assignment 5, week 06 : programming assignment 1, week 06 : programming assignment 2, week 06 : programming assignment 3, week 06 : programming assignment 4, week 06 : programming assignment 5, week 07 : programming assignment 1, week 07 : programming assignment 2.

Write a program to print Swastika Pattern in Java. 

Input is 2 numbers. 

(Rows and Columns)

For Example:

   * *

NOTE: Do not print any spaces between the ‘*’

Output should match exactly as specified by the question

Week 07 : Programming Assignment 3

Write a program to remove all occurrences of an element from array in Java.

Week 07 : Programming Assignment 4

Write a p rogram to compute the sum of all prime numbers in a given range. The range value will be positive.

Follow the naming convention as given in the main method of the suffix code.

Week 07 : Programming Assignment 5

Code to create two threads, one printing even numbers and the other printing odd numbers.

§   The PrintNumbers class is declared, and it implements the Runnable interface. This interface is part of Java's concurrency support and is used to represent a task that can be executed concurrently by a thread.

§   Create a constructor of this class that takes two private instance variables (start and end) to represent the range of numbers that will be printed by the thread.

§   Create a run method that is required by the Runnable interface and contains the code that will be executed when the thread is started. In this case, it should prints odd numbers within the specified range (start to end) using a for loop.

§   Hint: Thread.currentThread().getName() returns the name of the currently executing thread, which is useful for identifying which thread is printing the numbers.

No comments:

Post a comment.

Keep your comments reader friendly. Be civil and respectful. No self-promotion or spam. Stick to the topic. Questions welcome.

cppreference.com

Assignment operators.

(C++20)
(C++20)
(C++11)
(C++20)
(C++17)
(C++11)
(C++11)
General topics
(C++11)
-
-expression
block


/
(C++11)
(C++11)
(C++11)
(C++20)
(C++20)
(C++11)

expression
pointer
specifier

specifier (C++11)
specifier (C++11)
(C++11)

(C++11)
(C++11)
(C++11)
General
(C++11)
(C++20)
(C++26)
(C++11)
(C++11)
-expression
-expression
-expression
(C++11)
(C++11)
(C++17)
(C++20)
    

Assignment operators modify the value of the object.

Operator name  Syntax  Prototype examples (for class T)
Inside class definition Outside class definition
simple assignment Yes T& T::operator =(const T2& b);
addition assignment Yes T& T::operator +=(const T2& b); T& operator +=(T& a, const T2& b);
subtraction assignment Yes T& T::operator -=(const T2& b); T& operator -=(T& a, const T2& b);
multiplication assignment Yes T& T::operator *=(const T2& b); T& operator *=(T& a, const T2& b);
division assignment Yes T& T::operator /=(const T2& b); T& operator /=(T& a, const T2& b);
remainder assignment Yes T& T::operator %=(const T2& b); T& operator %=(T& a, const T2& b);
bitwise AND assignment Yes T& T::operator &=(const T2& b); T& operator &=(T& a, const T2& b);
bitwise OR assignment Yes T& T::operator |=(const T2& b); T& operator |=(T& a, const T2& b);
bitwise XOR assignment Yes T& T::operator ^=(const T2& b); T& operator ^=(T& a, const T2& b);
bitwise left shift assignment Yes T& T::operator <<=(const T2& b); T& operator <<=(T& a, const T2& b);
bitwise right shift assignment Yes T& T::operator >>=(const T2& b); T& operator >>=(T& a, const T2& b);

this, and most also return *this so that the user-defined operators can be used in the same manner as the built-ins. However, in a user-defined operator overload, any type can be used as return type (including void). can be any type including .
Definitions Assignment operator syntax Built-in simple assignment operator Assignment from an expression Assignment from a non-expression initializer clause Built-in compound assignment operator Example Defect reports See also

[ edit ] Definitions

Copy assignment replaces the contents of the object a with a copy of the contents of b ( b is not modified). For class types, this is performed in a special member function, described in copy assignment operator .

replaces the contents of the object a with the contents of b, avoiding copying if possible (b may be modified). For class types, this is performed in a special member function, described in .

(since C++11)

For non-class types, copy and move assignment are indistinguishable and are referred to as direct assignment .

Compound assignment replace the contents of the object a with the result of a binary operation between the previous value of a and the value of b .

[ edit ] Assignment operator syntax

The assignment expressions have the form

target-expr new-value (1)
target-expr op new-value (2)
target-expr - the expression to be assigned to
op - one of *=, /= %=, += -=, <<=, >>=, &=, ^=, |=
new-value - the expression (until C++11) (since C++11) to assign to the target
  • ↑ target-expr must have higher precedence than an assignment expression.
  • ↑ new-value cannot be a comma expression, because its precedence is lower.

If new-value is not an expression, the assignment expression will never match an overloaded compound assignment operator.

(since C++11)

[ edit ] Built-in simple assignment operator

For the built-in simple assignment, the object referred to by target-expr is modified by replacing its value with the result of new-value . target-expr must be a modifiable lvalue.

The result of a built-in simple assignment is an lvalue of the type of target-expr , referring to target-expr . If target-expr is a bit-field , the result is also a bit-field.

[ edit ] Assignment from an expression

If new-value is an expression, it is implicitly converted to the cv-unqualified type of target-expr . When target-expr is a bit-field that cannot represent the value of the expression, the resulting value of the bit-field is implementation-defined.

If target-expr and new-value identify overlapping objects, the behavior is undefined (unless the overlap is exact and the type is the same).

If the type of target-expr is volatile-qualified, the assignment is deprecated, unless the (possibly parenthesized) assignment expression is a or an .

(since C++20)

new-value is only allowed not to be an expression in following situations:

is of a , and new-value is empty or has only one element. In this case, given an invented variable t declared and initialized as T t = new-value , the meaning of x = new-value  is x = t. is of class type. In this case, new-value is passed as the argument to the assignment operator function selected by .   <double> z; z = {1, 2}; // meaning z.operator=({1, 2}) z += {1, 2}; // meaning z.operator+=({1, 2})   int a, b; a = b = {1}; // meaning a = b = 1; a = {1} = b; // syntax error
(since C++11)

In overload resolution against user-defined operators , for every type T , the following function signatures participate in overload resolution:

& operator=(T*&, T*);
volatile & operator=(T*volatile &, T*);

For every enumeration or pointer to member type T , optionally volatile-qualified, the following function signature participates in overload resolution:

operator=(T&, T);

For every pair A1 and A2 , where A1 is an arithmetic type (optionally volatile-qualified) and A2 is a promoted arithmetic type, the following function signature participates in overload resolution:

operator=(A1&, A2);

[ edit ] Built-in compound assignment operator

The behavior of every built-in compound-assignment expression target-expr   op   =   new-value is exactly the same as the behavior of the expression target-expr   =   target-expr   op   new-value , except that target-expr is evaluated only once.

The requirements on target-expr and new-value of built-in simple assignment operators also apply. Furthermore:

  • For + = and - = , the type of target-expr must be an arithmetic type or a pointer to a (possibly cv-qualified) completely-defined object type .
  • For all other compound assignment operators, the type of target-expr must be an arithmetic type.

In overload resolution against user-defined operators , for every pair A1 and A2 , where A1 is an arithmetic type (optionally volatile-qualified) and A2 is a promoted arithmetic type, the following function signatures participate in overload resolution:

operator*=(A1&, A2);
operator/=(A1&, A2);
operator+=(A1&, A2);
operator-=(A1&, A2);

For every pair I1 and I2 , where I1 is an integral type (optionally volatile-qualified) and I2 is a promoted integral type, the following function signatures participate in overload resolution:

operator%=(I1&, I2);
operator<<=(I1&, I2);
operator>>=(I1&, I2);
operator&=(I1&, I2);
operator^=(I1&, I2);
operator|=(I1&, I2);

For every optionally cv-qualified object type T , the following function signatures participate in overload resolution:

& operator+=(T*&, );
& operator-=(T*&, );
volatile & operator+=(T*volatile &, );
volatile & operator-=(T*volatile &, );

[ edit ] Example

Possible output:

[ edit ] Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
C++11 for assignments to class type objects, the right operand
could be an initializer list only when the assignment
is defined by a user-defined assignment operator
removed user-defined
assignment constraint
C++11 E1 = {E2} was equivalent to E1 = T(E2)
( is the type of ), this introduced a C-style cast
it is equivalent
to E1 = T{E2}
C++20 compound assignment operators for volatile
-qualified types were inconsistently deprecated
none of them
is deprecated
C++11 an assignment from a non-expression initializer clause
to a scalar value would perform direct-list-initialization
performs copy-list-
initialization instead
C++20 bitwise compound assignment operators for volatile types
were deprecated while being useful for some platforms
they are not
deprecated

[ edit ] See also

Operator precedence

Operator overloading

Common operators

a = b
a += b
a -= b
a *= b
a /= b
a %= b
a &= b
a |= b
a ^= b
a <<= b
a >>= b

++a
--a
a++
a--

+a
-a
a + b
a - b
a * b
a / b
a % b
~a
a & b
a | b
a ^ b
a << b
a >> b

!a
a && b
a || b

a == b
a != b
a < b
a > b
a <= b
a >= b
a <=> b

a[...]
*a
&a
a->b
a.b
a->*b
a.*b

function call
a(...)
comma
a, b
conditional
a ? b : c
Special operators

converts one type to another related type
converts within inheritance hierarchies
adds or removes -qualifiers
converts type to unrelated type
converts one type to another by a mix of , , and
creates objects with dynamic storage duration
destructs objects previously created by the new expression and releases obtained memory area
queries the size of a type
queries the size of a (since C++11)
queries the type information of a type
checks if an expression can throw an exception (since C++11)
queries alignment requirements of a type (since C++11)

for Assignment operators
  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 25 January 2024, at 23:41.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

Eberly Center

Teaching excellence & educational innovation, creating assignments.

Here are some general suggestions and questions to consider when creating assignments. There are also many other resources in print and on the web that provide examples of interesting, discipline-specific assignment ideas.

Consider your learning objectives.

What do you want students to learn in your course? What could they do that would show you that they have learned it? To determine assignments that truly serve your course objectives, it is useful to write out your objectives in this form: I want my students to be able to ____. Use active, measurable verbs as you complete that sentence (e.g., compare theories, discuss ramifications, recommend strategies), and your learning objectives will point you towards suitable assignments.

Design assignments that are interesting and challenging.

This is the fun side of assignment design. Consider how to focus students’ thinking in ways that are creative, challenging, and motivating. Think beyond the conventional assignment type! For example, one American historian requires students to write diary entries for a hypothetical Nebraska farmwoman in the 1890s. By specifying that students’ diary entries must demonstrate the breadth of their historical knowledge (e.g., gender, economics, technology, diet, family structure), the instructor gets students to exercise their imaginations while also accomplishing the learning objectives of the course (Walvoord & Anderson, 1989, p. 25).

Double-check alignment.

After creating your assignments, go back to your learning objectives and make sure there is still a good match between what you want students to learn and what you are asking them to do. If you find a mismatch, you will need to adjust either the assignments or the learning objectives. For instance, if your goal is for students to be able to analyze and evaluate texts, but your assignments only ask them to summarize texts, you would need to add an analytical and evaluative dimension to some assignments or rethink your learning objectives.

Name assignments accurately.

Students can be misled by assignments that are named inappropriately. For example, if you want students to analyze a product’s strengths and weaknesses but you call the assignment a “product description,” students may focus all their energies on the descriptive, not the critical, elements of the task. Thus, it is important to ensure that the titles of your assignments communicate their intention accurately to students.

Consider sequencing.

Think about how to order your assignments so that they build skills in a logical sequence. Ideally, assignments that require the most synthesis of skills and knowledge should come later in the semester, preceded by smaller assignments that build these skills incrementally. For example, if an instructor’s final assignment is a research project that requires students to evaluate a technological solution to an environmental problem, earlier assignments should reinforce component skills, including the ability to identify and discuss key environmental issues, apply evaluative criteria, and find appropriate research sources.

Think about scheduling.

Consider your intended assignments in relation to the academic calendar and decide how they can be reasonably spaced throughout the semester, taking into account holidays and key campus events. Consider how long it will take students to complete all parts of the assignment (e.g., planning, library research, reading, coordinating groups, writing, integrating the contributions of team members, developing a presentation), and be sure to allow sufficient time between assignments.

Check feasibility.

Is the workload you have in mind reasonable for your students? Is the grading burden manageable for you? Sometimes there are ways to reduce workload (whether for you or for students) without compromising learning objectives. For example, if a primary objective in assigning a project is for students to identify an interesting engineering problem and do some preliminary research on it, it might be reasonable to require students to submit a project proposal and annotated bibliography rather than a fully developed report. If your learning objectives are clear, you will see where corners can be cut without sacrificing educational quality.

Articulate the task description clearly.

If an assignment is vague, students may interpret it any number of ways – and not necessarily how you intended. Thus, it is critical to clearly and unambiguously identify the task students are to do (e.g., design a website to help high school students locate environmental resources, create an annotated bibliography of readings on apartheid). It can be helpful to differentiate the central task (what students are supposed to produce) from other advice and information you provide in your assignment description.

Establish clear performance criteria.

Different instructors apply different criteria when grading student work, so it’s important that you clearly articulate to students what your criteria are. To do so, think about the best student work you have seen on similar tasks and try to identify the specific characteristics that made it excellent, such as clarity of thought, originality, logical organization, or use of a wide range of sources. Then identify the characteristics of the worst student work you have seen, such as shaky evidence, weak organizational structure, or lack of focus. Identifying these characteristics can help you consciously articulate the criteria you already apply. It is important to communicate these criteria to students, whether in your assignment description or as a separate rubric or scoring guide . Clearly articulated performance criteria can prevent unnecessary confusion about your expectations while also setting a high standard for students to meet.

Specify the intended audience.

Students make assumptions about the audience they are addressing in papers and presentations, which influences how they pitch their message. For example, students may assume that, since the instructor is their primary audience, they do not need to define discipline-specific terms or concepts. These assumptions may not match the instructor’s expectations. Thus, it is important on assignments to specify the intended audience http://wac.colostate.edu/intro/pop10e.cfm (e.g., undergraduates with no biology background, a potential funder who does not know engineering).

Specify the purpose of the assignment.

If students are unclear about the goals or purpose of the assignment, they may make unnecessary mistakes. For example, if students believe an assignment is focused on summarizing research as opposed to evaluating it, they may seriously miscalculate the task and put their energies in the wrong place. The same is true they think the goal of an economics problem set is to find the correct answer, rather than demonstrate a clear chain of economic reasoning. Consequently, it is important to make your objectives for the assignment clear to students.

Specify the parameters.

If you have specific parameters in mind for the assignment (e.g., length, size, formatting, citation conventions) you should be sure to specify them in your assignment description. Otherwise, students may misapply conventions and formats they learned in other courses that are not appropriate for yours.

A Checklist for Designing Assignments

Here is a set of questions you can ask yourself when creating an assignment.

  • Provided a written description of the assignment (in the syllabus or in a separate document)?
  • Specified the purpose of the assignment?
  • Indicated the intended audience?
  • Articulated the instructions in precise and unambiguous language?
  • Provided information about the appropriate format and presentation (e.g., page length, typed, cover sheet, bibliography)?  
  • Indicated special instructions, such as a particular citation style or headings?  
  • Specified the due date and the consequences for missing it?
  • Articulated performance criteria clearly?
  • Indicated the assignment’s point value or percentage of the course grade?
  • Provided students (where appropriate) with models or samples?

Adapted from the WAC Clearinghouse at http://wac.colostate.edu/intro/pop10e.cfm .

CONTACT US to talk with an Eberly colleague in person!

  • Faculty Support
  • Graduate Student Support
  • Canvas @ Carnegie Mellon
  • Quick Links

creative commons image

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

  • Branch and Bound Tutorial
  • Backtracking Vs Branch-N-Bound
  • 0/1 Knapsack
  • 8 Puzzle Problem
  • Job Assignment Problem
  • N-Queen Problem
  • Travelling Salesman Problem

Job Assignment Problem using Branch And Bound

Let there be N workers and N jobs. Any worker can be assigned to perform any job, incurring some cost that may vary depending on the work-job assignment. It is required to perform all jobs by assigning exactly one worker to each job and exactly one job to each agent in such a way that the total cost of the assignment is minimized.

jobassignment

Let us explore all approaches for this problem.

Solution 1: Brute Force  

We generate n! possible job assignments and for each such assignment, we compute its total cost and return the less expensive assignment. Since the solution is a permutation of the n jobs, its complexity is O(n!).

Solution 2: Hungarian Algorithm  

The optimal assignment can be found using the Hungarian algorithm. The Hungarian algorithm has worst case run-time complexity of O(n^3).

Solution 3: DFS/BFS on state space tree  

A state space tree is a N-ary tree with property that any path from root to leaf node holds one of many solutions to given problem. We can perform depth-first search on state space tree and but successive moves can take us away from the goal rather than bringing closer. The search of state space tree follows leftmost path from the root regardless of initial state. An answer node may never be found in this approach. We can also perform a Breadth-first search on state space tree. But no matter what the initial state is, the algorithm attempts the same sequence of moves like DFS.

Solution 4: Finding Optimal Solution using Branch and Bound  

The selection rule for the next node in BFS and DFS is “blind”. i.e. the selection rule does not give any preference to a node that has a very good chance of getting the search to an answer node quickly. The search for an optimal solution can often be speeded by using an “intelligent” ranking function, also called an approximate cost function to avoid searching in sub-trees that do not contain an optimal solution. It is similar to BFS-like search but with one major optimization. Instead of following FIFO order, we choose a live node with least cost. We may not get optimal solution by following node with least promising cost, but it will provide very good chance of getting the search to an answer node quickly.

There are two approaches to calculate the cost function:  

  • For each worker, we choose job with minimum cost from list of unassigned jobs (take minimum entry from each row).
  • For each job, we choose a worker with lowest cost for that job from list of unassigned workers (take minimum entry from each column).

In this article, the first approach is followed.

Let’s take below example and try to calculate promising cost when Job 2 is assigned to worker A. 

jobassignment2

Since Job 2 is assigned to worker A (marked in green), cost becomes 2 and Job 2 and worker A becomes unavailable (marked in red). 

jobassignment3

Now we assign job 3 to worker B as it has minimum cost from list of unassigned jobs. Cost becomes 2 + 3 = 5 and Job 3 and worker B also becomes unavailable. 

jobassignment4

Finally, job 1 gets assigned to worker C as it has minimum cost among unassigned jobs and job 4 gets assigned to worker D as it is only Job left. Total cost becomes 2 + 3 + 5 + 4 = 14. 

jobassignment5

Below diagram shows complete search space diagram showing optimal solution path in green. 

jobassignment6

Complete Algorithm:  

Below is the implementation of the above approach:

Time Complexity: O(M*N). This is because the algorithm uses a double for loop to iterate through the M x N matrix.  Auxiliary Space: O(M+N). This is because it uses two arrays of size M and N to track the applicants and jobs.

Please Login to comment...

Similar reads.

  • Branch and Bound
  • Best Twitch Extensions for 2024: Top Tools for Viewers and Streamers
  • Discord Emojis List 2024: Copy and Paste
  • Best Adblockers for Twitch TV: Enjoy Ad-Free Streaming in 2024
  • PS4 vs. PS5: Which PlayStation Should You Buy in 2024?
  • Full Stack Developer Roadmap [2024 Updated]

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

University Writing Program

Carly schnitzler and the new edition of textgened: continuing experiments.

Dr. Carly Schnitzler

Carly Schnitzler has published a new edition of TextGenEd: Continuing Experiments .

In it, there are 15 open-access assignments that reinforce the humanity of writing, while experimenting with, challenging, and questioning LLMs (Large Language Models) as part of the writing process. Annette Vee and Schnitzler have an assignment in this edition , one that Schnitzler has taught in her Reintroduction to Writing courses multiple times, inspired by Vauhini Vara’s “Ghosts” essay.

Schnitzler and her co-editors hope that this is a useful resource for teachers of writing at various stages of their careers, institution types, and levels of comfort with AI/LLMs. They encourage others to please adapt these assignments and share widely, as they are helpful!

TextGenEd

IMAGES

  1. GCU ESL-440n

    assignment program

  2. Temporary transitional assignment program template in Word and Pdf formats

    assignment program

  3. Assignment

    assignment program

  4. Temporary transitional assignment program template in Word and Pdf formats

    assignment program

  5. Work Assignment Forms

    assignment program

  6. Temporary transitional assignment program template in Word and Pdf formats

    assignment program

VIDEO

  1. NEPA Assignment Program Overview 2015 1118

  2. Lesson11 lab assignment program 2a overview

  3. Lesson 11 lab assignment program 2 b overview

  4. HLTH632 Visual Program Presentation for Stakeholders Assignment Audio Recording

  5. week 3 assignment program |nptel course| problem solving through programming in C

  6. Team Assignments

COMMENTS

  1. PDF Homebase/Advance Assignment Program (Haap) Statement

    HOMEBASE/ADVANCE ASSIGNMENT PROGRAM (HAAP) STATEMENT (TO BE COMPLETED BY INDIVIDUAL'S (ON A ONE YEAR "ALL OTHERS" TOUR) The intent of the HAAP Program is to reduce PCS costs and the number of moves made by soldiers and their families. Under AR 614-200, soldiers will elect to participate or refuse HAAP by selecting one of the three ...

  2. Assignment Operators in Programming

    Assignment operators are used in programming to assign values to variables. We use an assignment operator to store and update data within a program. They enable programmers to store data in variables and manipulate that data. The most common assignment operator is the equals sign (=), which assigns the value on the right side of the operator to ...

  3. Air Force's Enlisted Swap Assignment Program starts June 1

    ARLINGTON, Va. (AFNS) -- Announced at the September 2022 Air and Space Forces Association's Air, Space and Cyber Conference, the Air Force Enlisted Swap Assignment Program goes live June 1 for senior master sergeants and below with a current assignment. This new policy provides Airmen with more control and new flexibilities in their assignment process.

  4. Python's Assignment Operator: Write Robust Assignments

    Python's Assignment Operator: Write Robust Assignments

  5. Assignment Operators in C

    Assignment Operators in C

  6. Java Assignment Operators with Examples

    Java Assignment Operators with Examples

  7. Assignments

    ASSIGNMENTS SOLUTIONS 1 Writing, compiling, and debugging programs; preprocessor macros; C file structure; variables; functions and problem statements; returning from functions 2 Types, operators, expressions 3

  8. Assignment (computer science)

    Assignment (computer science)

  9. Assignment

    Assignment - Air Force Personnel Center

  10. Air Force improves assignment process for co-parents, considers custody

    Air Force improves assignment process for co-parents ...

  11. Assignment problem

    Assignment problem

  12. Homebase/Advance Assignment Program (Haap) Statement

    HOMEBASE/ADVANCE ASSIGNMENT PROGRAM (HAAP) STATEMENT (TO BE COMPLETED BY INDIVIDUAL'S ON A ONE YEAR "ALL OTHERS" TOUR) The intent of HAAP is to reduce PCS costs and the number of moves made by Soldiers and their families. Under AR 614‐

  13. Get Started with Assignments

    Get Started with Assignments

  14. JavaScript Assignment

    JavaScript Assignment

  15. NPTEL Programming In Java Programming Assignment July-2024 Swayam

    This assignment has Public Test cases. Please click on "Compile & Run" button to see the status of Public test cases. Assignment will be evaluated only after submitting using Submit button below. If you only save as or compile and run the Program , your assignment will not be graded and you will not see your score after the deadline.

  16. Assignment operators

    Assignment operators

  17. Assignment Operators in Python

    Assignment Operators in Python

  18. Employee Developmental Assignment Program :: U.S. Army Aberdeen Proving

    Employee Developmental Assignment Program. The APG wide Employee Developmental Assignment Program will provide opportunities for employees to learn and gain experience in different organizations as together, we modernize the Army of 2030 and 2040. 179-Day Developmental Assignment Opportunity at ATEC HQ G-3/5/7, Senior Test Operations Officer ...

  19. 10 Types of Assignments in Online Degree Programs

    Journals. A journal assignment allows an online student to communicate with his or her professor directly. While topics are sometimes assigned, journals often enable students to express ideas ...

  20. Student Assignment & Program Access

    Student Assignment & Program Access

  21. Creating Assignments

    Double-check alignment. After creating your assignments, go back to your learning objectives and make sure there is still a good match between what you want students to learn and what you are asking them to do. If you find a mismatch, you will need to adjust either the assignments or the learning objectives.

  22. ZA: Employee with 'Terminated Excluded Assignment' Status Is Displayed

    Oracle HRMS (South Africa) - Version 12.2 and later: ZA: Employee with 'Terminated Excluded Assignment' Status Is Displayed in the Report Output after Running Electr ... After running the 'Electronic UIF file' concurrent program, it has been observed that employee with status 'Terminated Excluded Assignment' appears along with the active ...

  23. C++ Assignment Operator Overloading

    C++ Assignment Operator Overloading

  24. GENOGRAM ASSIGNMENT & RUBRICS 20221 (docx)

    Working with Families Genogram Assignment 2023 2 Working with Families Program Family Report Youth and (D.O.B.): Life Zoefley Date of Plan: Sunday, February 19, 2023 , Presenting Concerns: After completing Life genogram, the intergenerational pattern that were discover was that Life family is not in a close connection or relationships to each other maybe this due to,everyone wanting to achieve ...

  25. Junior Managers Program (JMP)

    International assignment. Experience the cultural diversity at Bosch and make valuable contacts worldwide. ... This is a major benefit of the JMP: having a more experienced mentor guide you throughout the program and beyond is truly a privilege. Gonzalo de los Santos — Spain. Consultant at Bosch Industry Consulting

  26. Job Assignment Problem using Branch And Bound

    Job Assignment Problem using Branch And Bound

  27. Carly Schnitzler and the New Edition of TextGenEd: Continuing

    Carly Schnitzler has published a new edition of TextGenEd: Continuing Experiments. In it, there are 15 open-access assignments that reinforce the humanity of writing, while experimenting with, challenging, and questioning LLMs (Large Language Models) as part of the writing process. Annette Vee and Schnitzler have an assignment in this edition, one that Schnitzler has taught...