Salene M. W. Jones Ph.D.

Cognitive Behavioral Therapy

Solving problems the cognitive-behavioral way, problem solving is another part of behavioral therapy..

Posted February 2, 2022 | Reviewed by Ekua Hagan

  • What Is Cognitive Behavioral Therapy?
  • Take our Your Mental Health Today Test
  • Find a therapist who practices CBT
  • Problem-solving is one technique used on the behavioral side of cognitive-behavioral therapy.
  • The problem-solving technique is an iterative, five-step process that requires one to identify the problem and test different solutions.
  • The technique differs from ad-hoc problem-solving in its suspension of judgment and evaluation of each solution.

As I have mentioned in previous posts, cognitive behavioral therapy is more than challenging negative, automatic thoughts. There is a whole behavioral piece of this therapy that focuses on what people do and how to change their actions to support their mental health. In this post, I’ll talk about the problem-solving technique from cognitive behavioral therapy and what makes it unique.

The problem-solving technique

While there are many different variations of this technique, I am going to describe the version I typically use, and which includes the main components of the technique:

The first step is to clearly define the problem. Sometimes, this includes answering a series of questions to make sure the problem is described in detail. Sometimes, the client is able to define the problem pretty clearly on their own. Sometimes, a discussion is needed to clearly outline the problem.

The next step is generating solutions without judgment. The "without judgment" part is crucial: Often when people are solving problems on their own, they will reject each potential solution as soon as they or someone else suggests it. This can lead to feeling helpless and also discarding solutions that would work.

The third step is evaluating the advantages and disadvantages of each solution. This is the step where judgment comes back.

Fourth, the client picks the most feasible solution that is most likely to work and they try it out.

The fifth step is evaluating whether the chosen solution worked, and if not, going back to step two or three to find another option. For step five, enough time has to pass for the solution to have made a difference.

This process is iterative, meaning the client and therapist always go back to the beginning to make sure the problem is resolved and if not, identify what needs to change.

Andrey Burmakin/Shutterstock

Advantages of the problem-solving technique

The problem-solving technique might differ from ad hoc problem-solving in several ways. The most obvious is the suspension of judgment when coming up with solutions. We sometimes need to withhold judgment and see the solution (or problem) from a different perspective. Deliberately deciding not to judge solutions until later can help trigger that mindset change.

Another difference is the explicit evaluation of whether the solution worked. When people usually try to solve problems, they don’t go back and check whether the solution worked. It’s only if something goes very wrong that they try again. The problem-solving technique specifically includes evaluating the solution.

Lastly, the problem-solving technique starts with a specific definition of the problem instead of just jumping to solutions. To figure out where you are going, you have to know where you are.

One benefit of the cognitive behavioral therapy approach is the behavioral side. The behavioral part of therapy is a wide umbrella that includes problem-solving techniques among other techniques. Accessing multiple techniques means one is more likely to address the client’s main concern.

Salene M. W. Jones Ph.D.

Salene M. W. Jones, Ph.D., is a clinical psychologist in Washington State.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

September 2024 magazine cover

It’s increasingly common for someone to be diagnosed with a condition such as ADHD or autism as an adult. A diagnosis often brings relief, but it can also come with as many questions as answers.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is Cognitive Psychology?

The Science of How We Think

Topics in Cognitive Psychology

  • Current Research
  • Cognitive Approach in Practice

Careers in Cognitive Psychology

How cognitive psychology differs from other branches of psychology, frequently asked questions.

Cognitive psychology is the study of internal mental processes—all of the workings inside your brain, including perception, thinking, memory, attention, language, problem-solving, and learning. Learning about how people think and process information helps researchers and psychologists understand the human brain and assist people with psychological difficulties.

This article discusses what cognitive psychology is—its history, current trends, practical applications, and career paths.

Findings from cognitive psychology help us understand how people think, including how they acquire and store memories. By knowing more about how these processes work, psychologists can develop new ways of helping people with cognitive problems.

Cognitive psychologists explore a wide variety of topics related to thinking processes. Some of these include: 

  • Attention --our ability to process information in the environment while tuning out irrelevant details
  • Choice-based behavior --actions driven by a choice among other possibilities
  • Decision-making
  • Information processing
  • Language acquisition --how we learn to read, write, and express ourselves
  • Problem-solving
  • Speech perception -how we process what others are saying
  • Visual perception --how we see the physical world around us

History of Cognitive Psychology

Although it is a relatively young branch of psychology , it has quickly grown to become one of the most popular subfields. Cognitive psychology grew into prominence between the 1950s and 1970s.

Prior to this time, behaviorism was the dominant perspective in psychology. This theory holds that we learn all our behaviors from interacting with our environment. It focuses strictly on observable behavior, not thought and emotion. Then, researchers became more interested in the internal processes that affect behavior instead of just the behavior itself. 

This shift is often referred to as the cognitive revolution in psychology. During this time, a great deal of research on topics including memory, attention, and language acquisition began to emerge. 

In 1967, the psychologist Ulric Neisser introduced the term cognitive psychology, which he defined as the study of the processes behind the perception, transformation, storage, and recovery of information.

Cognitive psychology became more prominent after the 1950s as a result of the cognitive revolution.

Current Research in Cognitive Psychology

The field of cognitive psychology is both broad and diverse. It touches on many aspects of daily life. There are numerous practical applications for this research, such as providing help coping with memory disorders, making better decisions , recovering from brain injury, treating learning disorders, and structuring educational curricula to enhance learning.

Current research on cognitive psychology helps play a role in how professionals approach the treatment of mental illness, traumatic brain injury, and degenerative brain diseases.

Thanks to the work of cognitive psychologists, we can better pinpoint ways to measure human intellectual abilities, develop new strategies to combat memory problems, and decode the workings of the human brain—all of which ultimately have a powerful impact on how we treat cognitive disorders.

The field of cognitive psychology is a rapidly growing area that continues to add to our understanding of the many influences that mental processes have on our health and daily lives.

From understanding how cognitive processes change as a child develops to looking at how the brain transforms sensory inputs into perceptions, cognitive psychology has helped us gain a deeper and richer understanding of the many mental events that contribute to our daily existence and overall well-being.

The Cognitive Approach in Practice

In addition to adding to our understanding of how the human mind works, the field of cognitive psychology has also had an impact on approaches to mental health. Before the 1970s, many mental health treatments were focused more on psychoanalytic , behavioral , and humanistic approaches.

The so-called "cognitive revolution" put a greater emphasis on understanding the way people process information and how thinking patterns might contribute to psychological distress. Thanks to research in this area, new approaches to treatment were developed to help treat depression, anxiety, phobias, and other psychological disorders .

Cognitive behavioral therapy and rational emotive behavior therapy are two methods in which clients and therapists focus on the underlying cognitions, or thoughts, that contribute to psychological distress.

What Is Cognitive Behavioral Therapy?

Cognitive behavioral therapy (CBT) is an approach that helps clients identify irrational beliefs and other cognitive distortions that are in conflict with reality and then aid them in replacing such thoughts with more realistic, healthy beliefs.

If you are experiencing symptoms of a psychological disorder that would benefit from the use of cognitive approaches, you might see a psychologist who has specific training in these cognitive treatment methods.

These professionals frequently go by titles other than cognitive psychologists, such as psychiatrists, clinical psychologists , or counseling psychologists , but many of the strategies they use are rooted in the cognitive tradition.

Many cognitive psychologists specialize in research with universities or government agencies. Others take a clinical focus and work directly with people who are experiencing challenges related to mental processes. They work in hospitals, mental health clinics, and private practices.

Research psychologists in this area often concentrate on a particular topic, such as memory. Others work directly on health concerns related to cognition, such as degenerative brain disorders and brain injuries.

Treatments rooted in cognitive research focus on helping people replace negative thought patterns with more positive, realistic ones. With the help of cognitive psychologists, people are often able to find ways to cope and even overcome such difficulties.

Reasons to Consult a Cognitive Psychologist

  • Alzheimer's disease, dementia, or memory loss
  • Brain trauma treatment
  • Cognitive therapy for a mental health condition
  • Interventions for learning disabilities
  • Perceptual or sensory issues
  • Therapy for a speech or language disorder

Whereas behavioral and some other realms of psychology focus on actions--which are external and observable--cognitive psychology is instead concerned with the thought processes behind the behavior. Cognitive psychologists see the mind as if it were a computer, taking in and processing information, and seek to understand the various factors involved.

A Word From Verywell

Cognitive psychology plays an important role in understanding the processes of memory, attention, and learning. It can also provide insights into cognitive conditions that may affect how people function.

Being diagnosed with a brain or cognitive health problem can be daunting, but it is important to remember that you are not alone. Together with a healthcare provider, you can come up with an effective treatment plan to help address brain health and cognitive problems.

Your treatment may involve consulting with a cognitive psychologist who has a background in the specific area of concern that you are facing, or you may be referred to another mental health professional that has training and experience with your particular condition.

Ulric Neisser is considered the founder of cognitive psychology. He was the first to introduce the term and to define the field of cognitive psychology. His primary interests were in the areas of perception and memory, but he suggested that all aspects of human thought and behavior were relevant to the study of cognition.

A cognitive map refers to a mental representation of an environment. Such maps can be formed through observation as well as through trial and error. These cognitive maps allow people to orient themselves in their environment.

While they share some similarities, there are some important differences between cognitive neuroscience and cognitive psychology. While cognitive psychology focuses on thinking processes, cognitive neuroscience is focused on finding connections between thinking and specific brain activity. Cognitive neuroscience also looks at the underlying biology that influences how information is processed.

Cognitive psychology is a form of experimental psychology. Cognitive psychologists use experimental methods to study the internal mental processes that play a role in behavior.

Sternberg RJ, Sternberg K. Cognitive Psychology . Wadsworth/Cengage Learning. 

Krapfl JE. Behaviorism and society . Behav Anal. 2016;39(1):123-9. doi:10.1007/s40614-016-0063-8

Cutting JE. Ulric Neisser (1928-2012) . Am Psychol . 2012;67(6):492. doi:10.1037/a0029351

Ruggiero GM, Spada MM, Caselli G, Sassaroli S. A historical and theoretical review of cognitive behavioral therapies: from structural self-knowledge to functional processes .  J Ration Emot Cogn Behav Ther . 2018;36(4):378-403. doi:10.1007/s10942-018-0292-8

Parvin P. Ulric Neisser, cognitive psychology pioneer, dies . Emory News Center.

APA Dictionary of Psychology. Cognitive map . American Psychological Association.

Forstmann BU, Wagenmakers EJ, Eichele T, Brown S, Serences JT. Reciprocal relations between cognitive neuroscience and formal cognitive models: opposites attract? . Trends Cogn Sci . 2011;15(6):272-279. doi:10.1016/j.tics.2011.04.002

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Logo for Digital Press at Collier Library

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

9 Chapter 9. Problem-Solving

Lightbulb icon

CHAPTER 9: PROBLEM SOLVING  

Chesspieces

How do we achieve our goals when the solution is not immediately obvious? What mental blocks are likely to get in our way, and how can we leverage our prior knowledge to solve novel problems?

CHAPTER 9 LICENSE AND ATTRIBUTION

Source: Multiple authors. Memory. In Cognitive Psychology and Cognitive Neuroscience. Wikibooks. Retrieved from https://en.wikibooks.org/wiki/ Cognitive_Psychology_and_Cognitive_Neuroscience

Wikibooks are licensed under the Creative Commons Attribution-ShareAlike License.

Cognitive Psychology and Cognitive Neuroscience is licensed under the GNU Free Documentation License.

Condensed from original version. American spellings used. Content added or changed to reflect American perspective and references. Context and transitions added throughout. Substantially edited, adapted, and (in some parts) rewritten for clarity and course relevance.

Cover photo by Pixabay on Pexels.

Knut is sitting at his desk, staring at a blank paper in front of him, and nervously playing with a pen in his right hand. Just a few hours left to hand in his essay and he has not written a word. All of a sudden he smashes his fist on the table and cries out: “I need a plan!”

Knut is confronted with something every one of us encounters in his daily life: he has a problem, and he does not know how to solve it. But what exactly is a problem? Are there strategies to solve problems? These are just a few of the questions we want to answer in this chapter.

We begin our chapter by giving a short description of what psychologists regard as a problem. Afterward we will discuss different approaches towards problem solving, starting with gestalt psychologists and ending with modern search strategies connected to artificial intelligence. In addition we will also consider how experts solve problems.

The most basic definition of a problem is any given situation that differs from a desired goal. This definition is very useful for discussing problem solving in terms of evolutionary adaptation, as it allows us to understand every aspect of (human or animal) life as a problem. This includes issues like finding food in harsh winters, remembering where you left your provisions, making decisions about which way to go, learning, repeating and varying all kinds of complex movements, and so on. Though all of these problems were of crucial importance during the human evolutionary process, they are by no means solved exclusively by humans. We find an amazing variety of different solutions for these problems in nature (just consider, for example, the way a bat hunts its prey compared to a spider). We will mainly focus on problems that are not solved by animals or evolution; we will instead focus on abstract problems, such as playing chess. Furthermore, we will not consider problems that have an obvious solution. For example, imagine Knut decides to take a sip of coffee from the mug next to his right hand. He does not even have to think about how to do this. This is not because the situation itself is trivial (a robot capable of recognizing the mug, deciding whether it is full, then grabbing it and moving it to Knut’s mouth would be a highly complex machine) but because in the context of all possible situations it is so trivial that it no longer is a problem our consciousness needs to be bothered with. The problems we will discuss in the following all need some conscious effort, though some seem to be solved without us being able to say how exactly we got to the solution. We will often find that the strategies we use to solve these problems are applicable to more basic problems, too.

Non-trivial, abstract problems can be divided into two groups: well-defined problems and ill- defined problems.

WELL-DEFINED PROBLEMS

For many abstract problems, it is possible to find an algorithmic solution. We call problems well-defined if they can be properly formalized, which involves the following properties:

•        The problem has a clearly defined given state. This might be the line-up of a chess game, a given formula you have to solve, or the set-up of the towers of Hanoi game (which we will discuss later).

•        There is a finite set of operators, that is, rules you may apply to the given state. For the chess game, e.g., these would be the rules that tell you which piece you may move to which position.

•        Finally, the problem has a clear goal state: The equations is resolved to x, all discs are moved to the right stack, or the other player is in checkmate.

A problem that fulfils these requirements can be implemented algorithmically. Therefore many well-defined problems can be very effectively solved by computers, like playing chess.

ILL-DEFINED PROBLEMS

Though many problems can be properly formalized, there are still others where this is not the case. Good examples for this are all kinds of tasks that involve creativity, and, generally speaking, all problems for which it is not possible to clearly define a given state and a goal state. Formalizing a problem such as “Please paint a beautiful picture” may be impossible.

Still, this is a problem most people would be able to approach in one way or the other, even if the result may be totally different from person to person. And while Knut might judge that picture X is gorgeous, you might completely disagree.

The line between well-defined and ill-defined problems is not always neat: ill-defined problems often involve sub-problems that can be perfectly well-defined. On the other hand, many everyday problems that seem to be completely well-defined involve — when examined in detail — a great amount of creativity and ambiguity. Consider Knut’s fairly ill-defined task of writing an essay: he will not be able to complete this task without first understanding the text he has to write about. This step is the first subgoal Knut has to solve. In this example, an ill-defined problem involves a well-defined sub-problem

RESTRUCTURING: THE GESTALTIST APPROACH

One dominant approach to problem solving originated from Gestalt psychologists in the 1920s. Their understanding of problem solving emphasizes behavior in situations requiring relatively novel means of attaining goals and suggests that problem solving involves a process called restructuring. With a Gestalt approach, two main questions have to be considered to understand the process of problem solving: 1) How is a problem represented in a person’s mind?, and 2) How does solving this problem involve a reorganization or restructuring of this representation?

HOW IS A PROBLEM REPRESENTED IN THE MIND?

In current research internal and external representations are distinguished: an internal representation is one held in memory, and which has to be retrieved by cognitive processes, while an external representation exists in the environment, such like physical objects or symbols whose information can be picked up and processed by the perceptual system.

Generally speaking, problem representations are models of the situation as experienced by the solver. Representing a problem means to analyze it and split it into separate components, including objects, predicates, state space, operators, and selection criteria.

The efficiency of problem solving depends on the underlying representations in a person’s mind, which usually also involves personal aspects. Re-analyzing the problem along different dimensions, or changing from one representation to another, can result in arriving at a new understanding of a problem. This is called restructuring . The following example illustrates this:

Two boys of different ages are playing badminton. The older one is a more skilled player, and therefore the outcome of matches between the two becomes predictable. After repeated defeats the younger boy finally loses interest in playing. The older boy now faces a problem, namely that he has no one to play with anymore. The usual options, according to M. Wertheimer (1945/82), range from “offering candy” and “playing a different game” to “not playing at full ability” and “shaming the younger boy into playing.” All of these strategies aim at making the younger boy stay.

The older boy instead comes up with a different solution: He proposes that they should try to keep the birdie in play as long as possible. Thus, they change from a game of competition to one of cooperation. The proposal is happily accepted, and the game is on again. The key in this story is that the older boy restructured the problem, having found that his attitude toward the game made it difficult to keep the younger boy playing. With the new type of game the problem is solved: the older boy is not bored, and the younger boy is not frustrated. In some cases, new representations can make a problem more difficult or much easier to solve. In the latter case insight – the sudden realization of a problem’s solution – may be the key to finding a solution.

There are two very different ways of approaching a goal-oriented situation . In one case an organism readily reproduces the response to the given problem from past experience. This is called reproductive thinking .

The second way requires something new and di fferent to achieve the goal—prior learning is of little help here. Such productive thinking is sometimes argued to involve insight . Gestalt psychologists state that insight problems are a separate category of problems in their own right.

Tasks that might involve insight usually have certain features: they require something new and non-obvious to be done, and in most cases they are difficult enough to predict that the initial solution attempt will be unsuccessful. When you solve a problem of this kind you often have a so called “aha” experience: the solution pops into mind all of a sudden. In one moment you have no idea how to answer the problem, and you feel you are not making any progress trying out different ideas, but in the next moment the problem is solved.

For readers who would like to experience such an effect, here is an example of an insight problem: Knut is given four pieces of a chain; each made up of three links. The task is to link it all up to a closed loop. To open a link costs 2 cents, and to close a link costs 3 cents. Knut has 15 cents to spend. What should Knut do?

Four groups of rings separated from eachother

If you want to know the correct solution, turn to the next page.

To show that solving insight problems involves restructuring , psychologists have created a number of problems that are more difficult to solve for participants with previous experiences, since it is harder for them to change the representation of the given situation.

For non-insight problems the opposite is the case. Solving arithmetical problems, for instance, requires schemas, through which one can get to the solution step by step.

Sometimes, previous experience or familiarity can even make problem solving more difficult. This is the case whenever habitual directions get in the way of finding new directions – an effect called fixation .

FUNCTIONAL FIXEDNESS

Functional fixedness concerns the solution of object use problems . The basic idea is that when the usual function an object is emphasized, it will be far more difficult for a person to use that object in a novel manner. An example for this effect is the candle problem : Imagine you are given a box of matches, some candles and tacks. On the wall of the room there is a cork-board. Your task is to fix the candle to the cork-board in such a way that no wax will drop on the floor when the candle is lit. Got an idea?

Dunker candle problem with matches, candles, and tacs.

Here’s a clue: when people are confronted with a problem and given certain objects to solve it, it is difficult for them to figure out that they could use the objects in a different way. In this example, the box has to be recognized as a support rather than as a container— tack the matchbox to the wall, and place the candle upright in the box. The box will catch the falling wax.

Four groups of rings linked together

A further example is the two-string problem : Knut is left in a room with a pair of pliers and given the task to bind two strings together that are hanging from the ceiling. The problem he faces is that he can never reach both strings at a time because they are just too far away from each other. What can Knut do?

Person holding string reaching for another string

Solution: Knut has to recognize he can use the pliers in a novel function: as weight for a pendulum. He can tie them to one of the strings, push it away, hold the other string and wait for the first one to swing toward him.

MENTAL FIXEDNESS

Functional fixedness as involved in the examples above illustrates a mental set: a person’s tendency to respond to a given task in a manner based on past experience. Because Knut maps an object to a particular function he has difficulty varying the way of use (i.e., pliers as pendulum’s weight).

One approach to studying fixation was to study wrong-answer verbal insight problems . In these probems, people tend to give an incorrect answer when failing to solve a problem rather than to give no answer at all.

A typical example: People are told that on a lake the area covered by water lilies doubles every 24 hours and that it takes 60 days to cover the whole lake. Then they are asked how many days it takes to cover half the lake. The typical response is “30 days” (whereas 59 days is correct).

These wrong solutions are due to an inaccurate interpretation , or representation , of the problem. This can happen because of sloppiness (a quick shallow reading of the problem and/or weak monitoring of their efforts made to come to a solution). In this case error feedback should help people to reconsider the problem features, note the inadequacy of their first answer, and find the correct solution. If, however, people are truly fixated on their incorrect representation, being told the answer is wrong does not help. In a study by P.I. Dallop and

R.L. Dominowski in 1992 these two possibilities were investigated. In approximately one third of the cases error feedback led to right answers, so only approximately one third of the wrong answers were due to inadequate monitoring.

Another approach is the study of examples with and without a preceding analogous task. In cases such like the water-jug task, analogous thinking indeed leads to a correct solution, but to take a different way might make the case much simpler:

Imagine Knut again, this time he is given three jugs with different capacities and is asked to measure the required amount of water. He is not allowed to use anything except the jugs and as much water as he likes. In the first case the sizes are: 127 cups, 21 cups and 3 cups. His goal is to measure 100 cups of water.

In the second case Knut is asked to measure 18 cups from jugs of 39, 15 and 3 cups capacity.

Participants who are given the 100 cup task first choose a complicated way to solve the second task. Participants who did not know about that complex task solved the 18 cup case by just adding three cups to 15.

SOLVING PROBLEMS BY ANALOGY

One special kind of restructuring is analogical problem solving. Here, to find a solution to one problem (i.e., the target problem) an analogous solution to another problem (i.e., the base problem) is presented.

An example for this kind of strategy is the radiation problem posed by K. Duncker in 1945:

As a doctor you have to treat a patient with a malignant, inoperable tumor, buried deep inside the body. There exists a special kind of ray which is harmless at a low intensity, but at sufficiently high intensity is able to destroy the tumor. At such high intensity, however, the ray will also destroy the healthy tissue it passes through on the way to the tumor. What can be done to destroy the tumor while preserving the healthy tissue?

When this question was asked to participants in an experiment, most of them couldn’t come up with the appropriate answer to the problem. Then they were told a story that went something like this:

A general wanted to capture his enemy’s fortress. He gathered a large army to launch a full- scale direct attack, but then learned that all the roads leading directly towards the fortress were blocked by landmines. These roadblocks were designed in such a way that it was possible for small groups of the fortress-owner’s men to pass over them safely, but a large group of men would set them off. The general devised the following plan: He divided his troops into several smaller groups and ordered each of them to march down a different road, timed in such a way that the entire army would reunite exactly when reaching the fortress and could hit with full strength.

Here, the story about the general is the source problem, and the radiation problem is the target problem. The fortress is analogous to the tumor and the big army corresponds to the highly intensive ray. Likewise, a small group of soldiers represents a ray at low intensity. The s olution to the problem is to split the ray up, as the general did with his army, and send the now harmless rays towards the tumor from different angles in such a way that they all meet when reaching it. No healthy tissue is damaged but the tumor itself gets destroyed by the ray at its full intensity.

M. Gick and K. Holyoak presented Duncker’s radiation problem to a group of participants in 1980 and 1983. 10 percent of participants were able to solve the problem right away, but 30 percent could solve it when they read the story of the general before. After being given an additional hint — to use the story as help — 75 percent of them solved the problem.

Following these results, Gick and Holyoak concluded that analogical problem solving consists of three steps:

1.  Recognizing that an analogical connection exists between the source and the base problem.

2. Mapping corresponding parts of the two problems onto each other (fortress ® tumour, army ® ray, etc.)

3. Applying the mapping to generate a parallel solution to the target problem (using little groups of soldiers approaching from different directions ® sending several weaker rays from different directions)

Next, Gick and Holyoak started looking for factors that could help the recognizing and mapping processes.

The abstract concept that links the target problem with the base problem is called the problem schema. Gick and Holyoak facilitated the activation of a schema with their participants by giving them two stories and asking them to compare and summarize them. This activation of problem schemas is called “schema induction“.

The experimenters had participants read stories that presented problems and their solutions. One story was the above story about the general, and other stories required the same problem schema (i.e., if a heavy force coming from one direction is not suitable, use multiple smaller forces that simultaneously converge on the target). The experimenters manipulated how many of these stories the participants read before the participants were asked to solve the radiation problem. The experiment showed that in order to solve the target problem, reading two stories with analogical problems is more helpful than reading only one story. This evidence suggests that schema induction can be achieved by exposing people to multiple problems with the same problem schema.

HOW DO EXPERTS SOLVE PROBLEMS?

An expert is someone who devotes large amounts of their time and energy to one specific field of interest in which they, subsequently, reach a certain level of mastery. It should not be a surprise that experts tend to be better at solving problems in their field than novices (i.e., people who are beginners or not as well-trained in a field as experts) are. Experts are faster at coming up with solutions and have a higher rate of correct solutions. But what is the difference between the way experts and non-experts solve problems? Research on the nature of expertise has come up with the following conclusions:

1.       Experts know more about their field,

2.      their knowledge is organized differently, and

3.      they spend more time analyzing the problem.

Expertise is domain specific— when it comes to problems that are outside the experts’ domain of expertise, their performance often does not differ from that of novices.

Knowledge: An experiment by Chase and Simon (1973) dealt with the question of how well experts and novices are able to reproduce positions of chess pieces on chess boards after a brief presentation. The results showed that experts were far better at reproducing actual game positions, but that their performance was comparable with that of novices when the chess pieces were arranged randomly on the board. Chase and Simon concluded that the superior performance on actual game positions was due to the ability to recognize familiar patterns: A chess expert has up to 50,000 patterns stored in his memory. In comparison, a good player might know about 1,000 patterns by heart and a novice only few to none at all. This very detailed knowledge is of crucial help when an expert is confronted with a new problem in his field. Still, it is not only the amount of knowledge that makes an expert more successful. Experts also organize their knowledge differently from novices.

Organization: In 1981 M. Chi and her co-workers took a set of 24 physics problems and presented them to a group of physics professors as well as to a group of students with only one semester of physics. The task was to group the problems based on their similarities. The students tended to group the problems based on their surface structure (i.e., similarities of objects used in the problem, such as sketches illustrating the problem), whereas the professors used their deep structure (i.e., the general physical principles that underlie the problems) as criteria. By recognizing the actual structure of a problem experts are able to connect the given task to the relevant knowledge they already have (e.g., another problem they solved earlier which required the same strategy).

Analysis: Experts often spend more time analyzing a problem before actually trying to solve it. This way of approaching a problem may often result in what appears to be a slow start, but in the long run this strategy is much more effective. A novice, on the other hand, might start working on the problem right away, but often reach dead ends as they chose a wrong path in the very beginning.

_________________________________________________________________________________________________________________________________________________________

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive psychology, 4(1), 55-81.

Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive science, 5(2), 121-152.

Duncker, K., & Lees, L. S. (1945). On problem-solving. Psychological monographs, 58(5).

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive psychology, 12(3), 306-355. Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive psychology, 15(1), 1-38.

Goldstein, E.B. (2005). Cogntive Psychology. Connecting Mind, Research, and Everyday Experience. Belmont: Thomson Wadsworth.

R.L. Dominowski and P. Dallob, Insight and Problem Solving. In The Nature of Insight, R.J. Sternberg & J.E. Davidson (Eds). MIT Press: USA, pp.33-62 (1995).

Wertheimer, M., (1945). Productive thinking. New York: Harper.

ESSENTIALS OF COGNITIVE PSYCHOLOGY Copyright © 2023 by Christopher Klein is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

APS

The Process of Problem Solving

  • Editor's Choice
  • Experimental Psychology
  • Problem Solving

problem solving cognitive psychology

In a 2013 article published in the Journal of Cognitive Psychology , Ngar Yin Louis Lee (Chinese University of Hong Kong) and APS William James Fellow Philip N. Johnson-Laird (Princeton University) examined the ways people develop strategies to solve related problems. In a series of three experiments, the researchers asked participants to solve series of matchstick problems.

In matchstick problems, participants are presented with an array of joined squares. Each square in the array is comprised of separate pieces. Participants are asked to remove a certain number of pieces from the array while still maintaining a specific number of intact squares. Matchstick problems are considered to be fairly sophisticated, as there is generally more than one solution, several different tactics can be used to complete the task, and the types of tactics that are appropriate can change depending on the configuration of the array.

Louis Lee and Johnson-Laird began by examining what influences the tactics people use when they are first confronted with the matchstick problem. They found that initial problem-solving tactics were constrained by perceptual features of the array, with participants solving symmetrical problems and problems with salient solutions faster. Participants frequently used tactics that involved symmetry and salience even when other solutions that did not involve these features existed.

To examine how problem solving develops over time, the researchers had participants solve a series of matchstick problems while verbalizing their problem-solving thought process. The findings from this second experiment showed that people tend to go through two different stages when solving a series of problems.

People begin their problem-solving process in a generative manner during which they explore various tactics — some successful and some not. Then they use their experience to narrow down their choices of tactics, focusing on those that are the most successful. The point at which people begin to rely on this newfound tactical knowledge to create their strategic moves indicates a shift into a more evaluative stage of problem solving.

In the third and last experiment, participants completed a set of matchstick problems that could be solved using similar tactics and then solved several problems that required the use of novel tactics.  The researchers found that participants often had trouble leaving their set of successful tactics behind and shifting to new strategies.

From the three studies, the researchers concluded that when people tackle a problem, their initial moves may be constrained by perceptual components of the problem. As they try out different tactics, they hone in and settle on the ones that are most efficient; however, this deduced knowledge can in turn come to constrain players’ generation of moves — something that can make it difficult to switch to new tactics when required.

These findings help expand our understanding of the role of reasoning and deduction in problem solving and of the processes involved in the shift from less to more effective problem-solving strategies.

Reference Louis Lee, N. Y., Johnson-Laird, P. N. (2013). Strategic changes in problem solving. Journal of Cognitive Psychology, 25 , 165–173. doi: 10.1080/20445911.2012.719021

problem solving cognitive psychology

good work for other researcher

APS regularly opens certain online articles for discussion on our website. Effective February 2021, you must be a logged-in APS member to post comments. By posting a comment, you agree to our Community Guidelines and the display of your profile information, including your name and affiliation. Any opinions, findings, conclusions, or recommendations present in article comments are those of the writers and do not necessarily reflect the views of APS or the article’s author. For more information, please see our Community Guidelines .

Please login with your APS account to comment.

problem solving cognitive psychology

Careers Up Close: Joel Anderson on Gender and Sexual Prejudices, the Freedoms of Academic Research, and the Importance of Collaboration

Joel Anderson, a senior research fellow at both Australian Catholic University and La Trobe University, researches group processes, with a specific interest on prejudice, stigma, and stereotypes.

problem solving cognitive psychology

Experimental Methods Are Not Neutral Tools

Ana Sofia Morais and Ralph Hertwig explain how experimental psychologists have painted too negative a picture of human rationality, and how their pessimism is rooted in a seemingly mundane detail: methodological choices. 

APS Fellows Elected to SEP

In addition, an APS Rising Star receives the society’s Early Investigator Award.

Privacy Overview

CookieDurationDescription
__cf_bm30 minutesThis cookie, set by Cloudflare, is used to support Cloudflare Bot Management.
CookieDurationDescription
AWSELBCORS5 minutesThis cookie is used by Elastic Load Balancing from Amazon Web Services to effectively balance load on the servers.
CookieDurationDescription
at-randneverAddThis sets this cookie to track page visits, sources of traffic and share counts.
CONSENT2 yearsYouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data.
uvc1 year 27 daysSet by addthis.com to determine the usage of addthis.com service.
_ga2 yearsThe _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors.
_gat_gtag_UA_3507334_11 minuteSet by Google to distinguish users.
_gid1 dayInstalled by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously.
CookieDurationDescription
loc1 year 27 daysAddThis sets this geolocation cookie to help understand the location of users who share the information.
VISITOR_INFO1_LIVE5 months 27 daysA cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface.
YSCsessionYSC cookie is set by Youtube and is used to track the views of embedded videos on Youtube pages.
yt-remote-connected-devicesneverYouTube sets this cookie to store the video preferences of the user using embedded YouTube video.
yt-remote-device-idneverYouTube sets this cookie to store the video preferences of the user using embedded YouTube video.
yt.innertube::nextIdneverThis cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen.
yt.innertube::requestsneverThis cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen.

Cognitive Approach in Psychology

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Cognitive psychology is the scientific study of the mind as an information processor. It concerns how we take in information from the outside world, and how we make sense of that information.

Cognitive psychology studies mental processes, including how people perceive, think, remember, learn, solve problems, and make decisions.

Cognitive psychologists try to build cognitive models of the information processing that occurs inside people’s minds, including perception, attention, language, memory, thinking, and consciousness.

Cognitive psychology became of great importance in the mid-1950s. Several factors were important in this:
  • Dissatisfaction with the behaviorist approach in its simple emphasis on external behavior rather than internal processes.
  • The development of better experimental methods.
  • Comparison between human and computer processing of information . Using computers allowed psychologists to try to understand the complexities of human cognition by comparing it with computers and artificial intelligence.

The emphasis of psychology shifted away from the study of conditioned behavior and psychoanalytical notions about the study of the mind, towards the understanding of human information processing using strict and rigorous laboratory investigation.

cognitive psychology sub-topics

Summary Table

Key Features
• Mediation processes
• Information processing approach
• Reductionism (breaks behavior down)
• (studies the group)
• Schemas (re: Kohlberg & Piaget)
Methodology
• Controlled Experiments
• Physical measures (e.g., neuroimaging)
• Case studies (cognitive neuroscience)
• Behavioral measures (e.g., reaction time)
Assumptions
• Psychology should be studied scientifically.
• Information received from our senses is processed by the brain, and this processing directs how we behave. 
• The mind/brain processes information like a computer. We take information in, and then it is subjected to mental processes. There is input, processing, and then output.
• Mediational processes (e.g., thinking, memory) occur between stimulus and response.
Strengths
• Objective measurement, which can be replicated and peer-reviewed
• Real-life applications (e.g., CBT)
• Clear predictions that can be can be scientifically tested
Limitations
• Reductionist (e.g., ignores biology)
• Experiments have low ecological validity
• Behaviourism – can’t objectively study unobservable internal behavior

Theoretical Assumptions

Mediational processes occur between stimulus and response:

The behaviorist approach only studies external observable (stimulus and response) behavior that can be objectively measured.

They believe that internal behavior cannot be studied because we cannot see what happens in a person’s mind (and therefore cannot objectively measure it).

However, cognitive psychologists consider it essential to examine an organism’s mental processes and how these influence behavior.

Cognitive psychology assumes a mediational process occurs between stimulus/input and response/output. 

mediational processes

These are mediational processes because they mediate (i.e., go-between) between the stimulus and the response. They come after the stimulus and before the response.

Instead of the simple stimulus-response links proposed by behaviorism, the mediational processes of the organism are essential to understand.

Without this understanding, psychologists cannot have a complete understanding of behavior.

The mediational (i.e., mental) event could be memory , perception , attention or problem-solving, etc. 
  • Perception : how we process and interpret sensory information.
  • Attention : how we selectively focus on certain aspects of our environment.
  • Memory : how we encode, store, and retrieve information.
  • Language : how we acquire, comprehend, and produce language.
  • Problem-solving and decision-making : how we reason, make judgments, and solve problems.
  • Schemas : Cognitive psychologists assume that people’s prior knowledge, beliefs, and experiences shape their mental processes. 

For example, the cognitive approach suggests that problem gambling results from maladaptive thinking and faulty cognitions, which both result in illogical errors.

Gamblers misjudge the amount of skill involved with ‘chance’ games, so they are likely to participate with the mindset that the odds are in their favour and that they may have a good chance of winning.

Therefore, cognitive psychologists say that if you want to understand behavior, you must understand these mediational processes.

Psychology should be seen as a science:

This assumption is based on the idea that although not directly observable, the mind can be investigated using objective and rigorous methods, similar to how other sciences study natural phenomena. 

Controlled experiments

The cognitive approach believes that internal mental behavior can be scientifically studied using controlled experiments . It uses the results of its investigations to make inferences about mental processes.  Cognitive psychology uses highly controlled laboratory experiments to avoid the influence of extraneous variables . This allows the researcher to establish a causal relationship between the independent and dependent variables. These controlled experiments are replicable, and the data obtained is objective (not influenced by an individual’s judgment or opinion) and measurable. This gives psychology more credibility.

Operational definitions

Cognitive psychologists develop operational definitions to study mental processes scientifically. These definitions specify how abstract concepts, such as attention or memory, can be measured and quantified (e.g., verbal protocols of thinking aloud). This allows for reliable and replicable research findings.

Falsifiability

Falsifiability in psychology refers to the ability to disprove a theory or hypothesis through empirical observation or experimentation. If a claim is not falsifiable, it is considered unscientific.

Cognitive psychologists aim to develop falsifiable theories and models, meaning they can be tested and potentially disproven by empirical evidence.

This commitment to falsifiability helps to distinguish scientific theories from pseudoscientific or unfalsifiable claims.

Empirical evidence

Cognitive psychologists rely on empirical evidence to support their theories and models. They collect data through various methods, such as experiments, observations, and questionnaires, to test hypotheses and draw conclusions about mental processes.

Cognitive psychologists assume that mental processes are not random but are organized and structured in specific ways. They seek to identify the underlying cognitive structures and processes that enable people to perceive, remember, and think.

Cognitive psychologists have made significant contributions to our understanding of mental processes and have developed various theories and models, such as the multi-store model of memory , the working memory model , and the dual-process theory of thinking.

Humans are information processors:

The idea of information processing was adopted by cognitive psychologists as a model of how human thought works.

The information processing approach is based on several assumptions, including:

  • Information is processed by a series of systems : The information processing approach proposes that a series of cognitive systems, such as attention, perception, and memory, process information from the environment. Each system plays a specific role in processing the information and passing it along to the next stage.
  • Processing systems transform information : As information passes through these cognitive systems, it is transformed or modified in systematic ways. For example, incoming sensory information may be filtered by attention, encoded into memory, or used to update existing knowledge structures.
  • Research aims to specify underlying processes and structures : The primary goal of research within the information processing approach is to identify, describe, and understand the specific cognitive processes and mental structures that underlie various aspects of cognitive performance, such as learning, problem-solving, and decision-making.
  • Human information processing resembles computer processing : The information processing approach draws an analogy between human cognition and computer processing. Just as computers take in information, process it according to specific algorithms, and produce outputs, the human mind is thought to engage in similar processes of input, processing, and output.

Computer-Mind Analogy

The computer-brain metaphor, or the information processing approach, is a significant concept in cognitive psychology that likens the human brain’s functioning to that of a computer.

This metaphor suggests that the brain, like a computer, processes information through a series of linear steps, including input, storage, processing, and output.

computer brain metaphor

According to this assumption, when we interact with the environment, we take in information through our senses (input).

This information is then processed by various cognitive systems, such as perception, attention, and memory. These systems work together to make sense of the input, organize it, and store it for later use.

During the processing stage, the mind performs operations on the information, such as encoding, transforming, and combining it with previously stored knowledge. This processing can involve various cognitive processes, such as thinking, reasoning, problem-solving, and decision-making.

The processed information can then be used to generate outputs, such as actions, decisions, or new ideas. These outputs are based on the information that has been processed and the individual’s goals and motivations.

This has led to models showing information flowing through the cognitive system, such as the multi-store memory model.

as multi

The information processing approach also assumes that the mind has a limited capacity for processing information, similar to a computer’s memory and processing limitations.

This means that humans can only attend to and process a certain amount of information at a given time, and that cognitive processes can be slowed down or impaired when the mind is overloaded.

The Role of Schemas

A schema is a “packet of information” or cognitive framework that helps us organize and interpret information. It is based on previous experience.

Cognitive psychologists assume that people’s prior knowledge, beliefs, and experiences shape their mental processes. They investigate how these factors influence perception, attention, memory, and thinking.

Schemas help us interpret incoming information quickly and effectively, preventing us from being overwhelmed by the vast amount of information we perceive in our environment.

Schemas can often affect cognitive processing (a mental framework of beliefs and expectations developed from experience). As people age, they become more detailed and sophisticated.

However, it can also lead to distortion of this information as we select and interpret environmental stimuli using schemas that might not be relevant.

This could be the cause of inaccuracies in areas such as eyewitness testimony. It can also explain some errors we make when perceiving optical illusions.

1. Behaviorist Critique

B.F. Skinner criticizes the cognitive approach. He believes that only external stimulus-response behavior should be studied, as this can be scientifically measured.

Therefore, mediation processes (between stimulus and response) do not exist as they cannot be seen and measured.

Behaviorism assumes that people are born a blank slate (tabula rasa) and are not born with cognitive functions like schemas , memory or perception .

Due to its subjective and unscientific nature, Skinner continues to find problems with cognitive research methods, namely introspection (as used by Wilhelm Wundt).

2. Complexity of mental experiences

Mental processes are highly complex and multifaceted, involving a wide range of cognitive, affective, and motivational factors that interact in intricate ways.

The complexity of mental experiences makes it difficult to isolate and study specific mental processes in a controlled manner.

Mental processes are often influenced by individual differences, such as personality, culture, and past experiences, which can introduce variability and confounds in research .

3. Experimental Methods 

While controlled experiments are the gold standard in cognitive psychology research, they may not always capture real-world mental processes’ complexity and ecological validity.

Some mental processes, such as creativity or decision-making in complex situations, may be difficult to study in laboratory settings.

Humanistic psychologist Carl Rogers believes that using laboratory experiments by cognitive psychology has low ecological validity and creates an artificial environment due to the control over variables .

Rogers emphasizes a more holistic approach to understanding behavior.

The cognitive approach uses a very scientific method that is controlled and replicable, so the results are reliable.

However, experiments lack ecological validity because of the artificiality of the tasks and environment, so they might not reflect the way people process information in their everyday lives.

For example, Baddeley (1966) used lists of words to find out the encoding used by LTM.

However, these words had no meaning to the participants, so the way they used their memory in this task was probably very different from what they would have done if the words had meaning for them.

This is a weakness, as the theories might not explain how memory works outside the laboratory.

4. Computer Analogy

The information processing paradigm of cognitive psychology views the minds in terms of a computer when processing information.

However, although there are similarities between the human mind and the operations of a computer (inputs and outputs, storage systems, and the use of a central processor), the computer analogy has been criticized.

For example, the human mind is characterized by consciousness, subjective experience, and self-awareness , which are not present in computers.

Computers do not have feelings, emotions, or a sense of self, which play crucial roles in human cognition and behavior.

The brain-computer metaphor is often used implicitly in neuroscience literature through terms like “sensory computation,” “algorithms,” and “neural codes.” However, it is difficult to identify these concepts in the actual brain.

5. Reductionist

The cognitive approach is reductionist as it does not consider emotions and motivation, which influence the processing of information and memory. For example, according to the Yerkes-Dodson law , anxiety can influence our memory.

Such machine reductionism (simplicity) ignores the influence of human emotion and motivation on the cognitive system and how this may affect our ability to process information.

Early theories of cognitive approach did not always recognize physical ( biological psychology ) and environmental (behaviorist approach) factors in determining behavior.

However, it’s important to note that modern cognitive psychology has evolved to incorporate a more holistic understanding of human cognition and behavior.

1. Importance of cognitive factors versus external events

Cognitive psychology emphasizes the role of internal cognitive processes in shaping emotional experiences, rather than solely focusing on external events.

Beck’s cognitive theory suggests that it is not the external events themselves that lead to depression, but rather the way an individual interprets and processes those events through their negative schemas.

This highlights the importance of addressing cognitive factors in the treatment of depression and other mental health issues.

Social exchange theory (Thibaut & Kelly, 1959) emphasizes that relationships are formed through internal mental processes, such as decision-making, rather than solely based on external factors.

The computer analogy can be applied to this concept, where individuals observe behaviors (input), process the costs and benefits (processing), and then make a decision about the relationship (output).

2. Interdisciplinary approach

While early cognitive psychology may have neglected physical and environmental factors, contemporary cognitive psychology has increasingly integrated insights from other approaches.

Cognitive psychology draws on methods and findings from other scientific disciplines, such as neuroscience , computer science, and linguistics, to inform their understanding of mental processes.

This interdisciplinary approach strengthens the scientific basis of cognitive psychology.

Cognitive psychology has influenced and integrated with many other approaches and areas of study to produce, for example, social learning theory , cognitive neuropsychology, and artificial intelligence (AI).

3. Real World Applications

Another strength is that the research conducted in this area of psychology very often has applications in the real world.

By highlighting the importance of cognitive processing, the cognitive approach can explain mental disorders such as depression.

Beck’s cognitive theory of depression argues that negative schemas about the self, the world, and the future are central to the development and maintenance of depression.

These negative schemas lead to biased processing of information, selective attention to negative aspects of experience, and distorted interpretations of events, which perpetuate the depressive state.

By identifying the role of cognitive processes in mental disorders, cognitive psychology has informed the development of targeted interventions.

Cognitive behavioral therapy aims to modify the maladaptive thought patterns and beliefs that underlie emotional distress, helping individuals to develop more balanced and adaptive ways of thinking.

CBT’s basis is to change how people process their thoughts to make them more rational or positive.

Through techniques such as cognitive restructuring, behavioral experiments, and guided discovery, CBT helps individuals to challenge and change their negative schemas, leading to improvements in mood and functioning.

Cognitive behavioral therapy (CBT) has been very effective in treating depression (Hollon & Beck, 1994), and moderately effective for anxiety problems (Beck, 1993). 

Issues and Debates

Free will vs. determinism.

The cognitive approach’s position is unclear. It argues that cognitive processes are influenced by experiences and schemas, which implies a degree of determinism.

On the other hand, cognitive-behavioral therapy (CBT) operates on the premise that individuals can change their thought patterns, suggesting a capacity for free will.

Nature vs. Nurture

The cognitive approach takes an interactionist view of the debate, acknowledging the influence of both nature and nurture on cognitive processes.

It recognizes that while some cognitive abilities, such as language acquisition, may have an innate component (nature), experiences and learning (nurture) also shape the way information is processed.

Holism vs. Reductionism

The cognitive approach tends to be reductionist in its methodology, as it often studies cognitive processes in isolation.

For example, researchers may focus on memory processes without considering the influence of other cognitive functions or environmental factors.

While this approach allows for more controlled study, it may lack ecological validity, as in real life, cognitive processes typically interact and function simultaneously.

Idiographic vs. Nomothetic

The cognitive approach is primarily nomothetic, as it seeks to establish general principles and theories of information processing that apply to all individuals.

It aims to identify universal patterns and mechanisms of cognition rather than focusing on individual differences.

History of Cognitive Psychology

  • Wolfgang Köhler (1925) – Köhler’s book “The Mentality of Apes” challenged the behaviorist view by suggesting that animals could display insightful behavior, leading to the development of Gestalt psychology.
  • Norbert Wiener (1948) – Wiener’s book “Cybernetics” introduced concepts such as input and output, which influenced the development of information processing models in cognitive psychology.
  • Edward Tolman (1948) – Tolman’s work on cognitive maps in rats demonstrated that animals have an internal representation of their environment, challenging the behaviorist view.
  • George Miller (1956) – Miller’s paper “The Magical Number 7 Plus or Minus 2” proposed that short-term memory has a limited capacity of around seven chunks of information, which became a foundational concept in cognitive psychology.
  • Allen Newell and Herbert A. Simon (1972) – Newell and Simon developed the General Problem Solver, a computer program that simulated human problem-solving, contributing to the growth of artificial intelligence and cognitive modeling.
  • George Miller and Jerome Bruner (1960) – Miller and Bruner established the Center for Cognitive Studies at Harvard, which played a significant role in the development of cognitive psychology as a distinct field.
  • Ulric Neisser (1967) – Neisser’s book “Cognitive Psychology” formally established cognitive psychology as a separate area of study, focusing on mental processes such as perception, memory, and thinking.
  • Richard Atkinson and Richard Shiffrin (1968) – Atkinson and Shiffrin proposed the Multi-Store Model of memory, which divided memory into sensory, short-term, and long-term stores, becoming a key model in the study of memory.
  • Eleanor Rosch’s (1970s) research on natural categories and prototypes, which influenced the study of concept formation and categorization.
  • Endel Tulving’s (1972) distinction between episodic and semantic memory, which further developed the understanding of long-term memory.
  • Baddeley and Hitch’s (1974) proposal of the Working Memory Model, which expanded on the concept of short-term memory and introduced the idea of a central executive.
  • Marvin Minsky’s (1975) framework of frames in artificial intelligence, which influenced the understanding of knowledge representation in cognitive psychology.
  • David Rumelhart and Andrew Ortony’s (1977) work on schema theory, which described how knowledge is organized and used for understanding and remembering information.
  • Amos Tversky and Daniel Kahneman’s (1970s-80s) research on heuristics and biases in decision making, which led to the development of behavioral economics and the study of judgment and decision-making.
  • David Marr’s (1982) computational theory of vision, which provided a framework for understanding visual perception and influenced the field of computational cognitive science.
  • The development of connectionism and parallel distributed processing (PDP) models in the 1980s, which provided an alternative to traditional symbolic models of cognitive processes.
  • Noam Chomsky’s (1980s) theory of Universal Grammar and the language acquisition device, which influenced the study of language and cognitive development.
  • The emergence of cognitive neuroscience in the 1990s, which combined techniques from cognitive psychology, neuroscience, and computer science to study the neural basis of cognitive processes.

Atkinson, R. C., & Shiffrin, R. M. (1968). Chapter: Human memory: A proposed system and its control processes. In Spence, K. W., & Spence, J. T. The psychology of learning and motivation (Volume 2). New York: Academic Press. pp. 89–195.

Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory (Vol. 8, pp. 47-89). Academic Press.

Beck, A. T, & Steer, R. A. (1993). Beck Anxiety Inventory Manual. San Antonio: Harcourt Brace and Company.

Chomsky, N. (1986). Knowledge of Language: Its Nature, Origin, and Use . Praeger.

Gazzaniga, M. S. (Ed.). (1995). The Cognitive Neurosciences. MIT Press.

Hollon, S. D., & Beck, A. T. (1994). Cognitive and cognitive-behavioral therapies. In A. E. Bergin & S.L. Garfield (Eds.), Handbook of psychotherapy and behavior change (pp. 428—466) . New York: Wiley.

Köhler, W. (1925). An aspect of Gestalt psychology. The Pedagogical Seminary and Journal of Genetic Psychology, 32(4) , 691-723.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information . W. H. Freeman.

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review , 63 (2): 81–97.

Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.), The Psychology of Computer Vision (pp. 211-277). McGraw-Hill.

Neisser, U (1967). Cognitive psychology . Appleton-Century-Crofts: New York

Newell, A., & Simon, H. (1972). Human problem solving . Prentice-Hall.

Rosch, E. H. (1973). Natural categories. Cognitive Psychology, 4 (3), 328-350.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations. MIT Press.

Rumelhart, D. E., & Ortony, A. (1977). The representation of knowledge in memory. In R. C. Anderson, R. J. Spiro, & W. E. Montague (Eds.), Schooling and the Acquisition of Knowledge (pp. 99-135). Erlbaum.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185 (4157), 1124-1131.

Thibaut, J., & Kelley, H. H. (1959). The social psychology of groups . New York: Wiley.

Tolman, E. C., Hall, C. S., & Bretnall, E. P. (1932). A disproof of the law of effect and a substitution of the laws of emphasis, motivation and disruption. Journal of Experimental Psychology, 15(6) , 601.

Tolman E. C. (1948). Cognitive maps in rats and men . Psychological Review. 55, 189–208

Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of Memory (pp. 381-403). Academic Press.

Wiener, N. (1948). Cybernetics or control and communication in the animal and the machine . Paris, (Hermann & Cie) & Camb. Mass. (MIT Press).

Further Reading

  • Why Your Brain is Not a Computer
  • Cognitive Psychology Historial Development

Print Friendly, PDF & Email

Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more: https://www.cambridge.org/universitypress/about-us/news-and-blogs/cambridge-university-press-publishing-update-following-technical-disruption

We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings .

Login Alert

problem solving cognitive psychology

  • > The Psychology of Problem Solving
  • > Feeling and Thinking: Implications for Problem Solving

problem solving cognitive psychology

Book contents

  • Frontmatter
  • Contributors
  • PART I INTRODUCTION
  • PART II RELEVANT ABILITIES AND SKILLS
  • PART III STATES AND STRATEGIES
  • 8 Motivating Self-Regulated Problem Solvers
  • 9 Feeling and Thinking: Implications for Problem Solving
  • 10 The Fundamental Computational Biases of Human Cognition: Heuristics That (Sometimes) Impair Decision Making and Problem Solving
  • 11 Analogical Transfer in Problem Solving
  • PART IV CONCLUSION AND INTEGRATION

9 - Feeling and Thinking: Implications for Problem Solving

Published online by Cambridge University Press:  05 June 2012

INTRODUCTION

Consistent with the classic juxtaposition of reason and emotion, moods and emotions have long been assumed to interfere with problem solving. Recent advances in psychology's understanding of the interplay of feeling and thinking suggest a more complex story: Positive as well as negative moods and emotions can facilitate as well as inhibit problem solving, depending on the nature of the task. Moreover, the same feeling may have differential effects at different stages of the problem-solving process. In addition, nonaffective feelings, such as bodily sensations and cognitive experiences (e.g., fluency of recall or perception), may also influence problem solving, often paralleling the effects observed for affective feelings. This chapter summarizes key lessons learned about the interplay of feeling and thinking and addresses their implications for problem solving. To set the stage, we begin with a summary of key elements of the problem-solving process.

ELEMENTS OF PROBLEM SOLVING

In the most general sense, “a problem arises when we have a goal – a state of affairs that we want to achieve – and it is not immediately apparent how the goal can be attained” (Holyoak, 1995, p. 269). Consistent with the spatial metaphors of ordinary language use, where we “search for a way to reach the goal,” “get lost” in a problem, meet “roadblocks” or have to “backtrack,” problem solving is typically conceptualized as search through a metaphorical space (Duncker, 1945).

Access options

Save book to kindle.

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle .

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service .

  • Feeling and Thinking: Implications for Problem Solving
  • By Norbert Schwarz , University of Michigan, Ian Skurnik , University of Michigan
  • Edited by Janet E. Davidson , Lewis and Clark College, Portland , Robert J. Sternberg , Yale University, Connecticut
  • Book: The Psychology of Problem Solving
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511615771.010

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox .

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive .

IMAGES

  1. Cognitive Psychology

    problem solving cognitive psychology

  2. 🎉 Psychology problem solving strategies. Strategies of problem solving

    problem solving cognitive psychology

  3. Problem-Solving Strategies: Definition and 5 Techniques to Try

    problem solving cognitive psychology

  4. Overview of the Problem-Solving Mental Process

    problem solving cognitive psychology

  5. Thinking and Problem-Solving

    problem solving cognitive psychology

  6. SOLUTION: The Problem Solving Cycle, Cognitive Psychology Study Guide

    problem solving cognitive psychology

VIDEO

  1. Problem solving #psychology #psychologyfacts #psychological #educational #education

  2. Did you know?

  3. Mind-Blowing Psychology Fact Revealed!

  4. Cognitive Psychology (2135) Unit 9 Problem Solving

  5. PROBLEM SOLVING IN COGNITIVE PSYCHOLOGY

  6. "IQ Boost Challenge: Master Brain Teasers" #shorts